Nuprl Lemma : fin-powerset-lattice_wf
∀[T:Type]. ∀[eq:EqDecider(T)].  (fin-powerset-lattice(T;eq) ∈ DistributiveLattice)
Proof
Definitions occuring in Statement : 
fin-powerset-lattice: fin-powerset-lattice(T;eq)
, 
distributive-lattice: DistributiveLattice
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fin-powerset-lattice: fin-powerset-lattice(T;eq)
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
so_apply: x[s1;s2]
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
mk-distributive-lattice_wf, 
fset_wf, 
fset-intersection_wf, 
fset-union_wf, 
equal_wf, 
squash_wf, 
true_wf, 
fset-intersection-commutes, 
iff_weakening_equal, 
fset-union-commutes, 
fset-intersection-associative, 
fset-union-associative, 
fset-absorption1, 
fset-absorption2, 
fset-distributive, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
because_Cache, 
independent_isectElimination, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productElimination, 
independent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
independent_pairFormation
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].    (fin-powerset-lattice(T;eq)  \mmember{}  DistributiveLattice)
Date html generated:
2020_05_20-AM-08_47_25
Last ObjectModification:
2017_07_28-AM-09_15_02
Theory : lattices
Home
Index