Nuprl Lemma : lattice-fset-join-le

[l:BoundedLattice]. ∀[eq:EqDecider(Point(l))]. ∀[s:fset(Point(l))]. ∀[x:Point(l)].
  (\/(s) ≤ ⇐⇒ ∀p:Point(l). (p ∈  p ≤ x))


Proof




Definitions occuring in Statement :  lattice-fset-join: \/(s) bdd-lattice: BoundedLattice lattice-le: a ≤ b lattice-point: Point(l) fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q iff: ⇐⇒ Q implies:  Q all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a prop: bdd-lattice: BoundedLattice so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q lattice-le: a ≤ b guard: {T}
Lemmas referenced :  bdd-lattice_wf deq_wf fset_wf all_wf lattice-le_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-axioms_wf and_wf lattice-structure_wf bounded-lattice-structure_wf subtype_rel_set lattice-point_wf fset-member_wf decidable-equal-deq lattice-fset-join_wf bdd-lattice-subtype-lattice lattice-le_transitivity lattice-fset-join-is-lub
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination introduction independent_pairFormation lambdaFormation applyEquality sqequalRule because_Cache independent_functionElimination dependent_functionElimination independent_isectElimination instantiate lambdaEquality cumulativity functionEquality independent_pairEquality axiomEquality isect_memberEquality

Latex:
\mforall{}[l:BoundedLattice].  \mforall{}[eq:EqDecider(Point(l))].  \mforall{}[s:fset(Point(l))].  \mforall{}[x:Point(l)].
    (\mbackslash{}/(s)  \mleq{}  x  \mLeftarrow{}{}\mRightarrow{}  \mforall{}p:Point(l).  (p  \mmember{}  s  {}\mRightarrow{}  p  \mleq{}  x))



Date html generated: 2020_05_20-AM-08_43_54
Last ObjectModification: 2016_01_19-PM-03_34_26

Theory : lattices


Home Index