Nuprl Lemma : order-preserving-map-is-bounded-lattice-hom

[l1,l2:BoundedLattice]. ∀[f:Point(l1) ⟶ Point(l2)].
  f ∈ Hom(l1;l2) 
  supposing ((∀x,y:Point(l1).  (x ≤  x ≤ y))
            ∧ (∀a,b:Point(l1).  a ∧ b ≤ a ∧ b)
            ∧ (∀a,b:Point(l1).  a ∨ b ≤ a ∨ b))
  ∧ ((f 0) 0 ∈ Point(l2))
  ∧ ((f 1) 1 ∈ Point(l2))


Proof




Definitions occuring in Statement :  bounded-lattice-hom: Hom(l1;l2) bdd-lattice: BoundedLattice lattice-0: 0 lattice-1: 1 lattice-le: a ≤ b lattice-join: a ∨ b lattice-meet: a ∧ b lattice-point: Point(l) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q bounded-lattice-hom: Hom(l1;l2) cand: c∧ B subtype_rel: A ⊆B bdd-lattice: BoundedLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] lattice-hom: Hom(l1;l2) implies:  Q all: x:A. B[x]
Lemmas referenced :  equal_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype lattice-0_wf lattice-1_wf all_wf lattice-le_wf lattice-meet_wf lattice-join_wf bdd-lattice_wf order-preserving-map-is-lattice-hom bdd-lattice-subtype-lattice
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin dependent_set_memberEquality hypothesis independent_pairFormation productEquality extract_by_obid isectElimination hypothesisEquality applyEquality sqequalRule instantiate lambdaEquality cumulativity because_Cache independent_isectElimination setElimination rename equalityTransitivity equalitySymmetry axiomEquality functionEquality functionExtensionality isect_memberEquality

Latex:
\mforall{}[l1,l2:BoundedLattice].  \mforall{}[f:Point(l1)  {}\mrightarrow{}  Point(l2)].
    f  \mmember{}  Hom(l1;l2) 
    supposing  ((\mforall{}x,y:Point(l1).    (x  \mleq{}  y  {}\mRightarrow{}  f  x  \mleq{}  f  y))
                        \mwedge{}  (\mforall{}a,b:Point(l1).    f  a  \mwedge{}  f  b  \mleq{}  f  a  \mwedge{}  b)
                        \mwedge{}  (\mforall{}a,b:Point(l1).    f  a  \mvee{}  b  \mleq{}  f  a  \mvee{}  f  b))
    \mwedge{}  ((f  0)  =  0)
    \mwedge{}  ((f  1)  =  1)



Date html generated: 2020_05_20-AM-08_26_23
Last ObjectModification: 2017_07_28-AM-09_13_15

Theory : lattices


Home Index