Nuprl Lemma : guarded_permutation_transitivity

[T:Type]. ∀[P:L:(T List) ⟶ ℕ||L|| 1 ⟶ ℙ].  Trans(T List)(_1 guarded_permutation(T;P) _2)


Proof




Definitions occuring in Statement :  guarded_permutation: guarded_permutation(T;P) length: ||as|| list: List trans: Trans(T;x,y.E[x; y]) int_seg: {i..j-} uall: [x:A]. B[x] prop: infix_ap: y function: x:A ⟶ B[x] subtract: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] guarded_permutation: guarded_permutation(T;P) trans: Trans(T;x,y.E[x; y]) all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] prop: and: P ∧ Q subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q false: False less_than: a < b squash: T uiff: uiff(P;Q) uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top subtract: m so_apply: x[s]
Lemmas referenced :  rel_star_transitivity exists_wf int_seg_wf subtract_wf length_wf equal_wf swap_wf decidable__lt subtract-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_wf false_wf lelt_wf add-member-int_seg2 decidable__le intformle_wf int_formula_prop_le_lemma infix_ap_wf list_wf rel_star_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache lambdaEquality natural_numberEquality hypothesisEquality hypothesis sqequalRule productEquality applyEquality functionExtensionality setElimination rename dependent_set_memberEquality productElimination independent_pairFormation dependent_functionElimination cumulativity unionElimination pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp imageElimination baseApply closedConclusion baseClosed independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll independent_functionElimination instantiate universeEquality functionEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:L:(T  List)  {}\mrightarrow{}  \mBbbN{}||L||  -  1  {}\mrightarrow{}  \mBbbP{}].    Trans(T  List)($_{1}$  guarded\_per\000Cmutation(T;P)  $_{2}$)



Date html generated: 2017_10_01-AM-08_38_35
Last ObjectModification: 2017_07_26-PM-04_27_05

Theory : list!


Home Index