Nuprl Lemma : length_disjoint_sublists

[T:Type]. ∀[L1,L2,L:T List].  (||L1|| ||L2||) ≤ ||L|| supposing disjoint_sublists(T;L1;L2;L)


Proof




Definitions occuring in Statement :  disjoint_sublists: disjoint_sublists(T;L1;L2;L) length: ||as|| list: List uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B add: m universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False prop: top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uiff: uiff(P;Q) or: P ∨ Q decidable: Dec(P) ge: i ≥  guard: {T} all: x:A. B[x] nat:
Lemmas referenced :  less_than'_wf length_wf disjoint_sublists_wf list_wf le_wf equal_wf false_wf int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformeq_wf itermAdd_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt add-is-int-iff decidable__le nat_properties nat_wf length_wf_nat add_nat_wf injection_le disjoint_sublists_witness inject_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality because_Cache extract_by_obid isectElimination hypothesis addEquality axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality inhabitedIsType voidElimination universeEquality independent_functionElimination computeAll independent_pairFormation voidEquality intEquality int_eqEquality dependent_pairFormation independent_isectElimination baseClosed closedConclusion baseApply promote_hyp pointwiseFunctionality unionElimination natural_numberEquality rename setElimination applyLambdaEquality lambdaFormation cumulativity dependent_set_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2,L:T  List].    (||L1||  +  ||L2||)  \mleq{}  ||L||  supposing  disjoint\_sublists(T;L1;L2;L)



Date html generated: 2019_10_15-AM-10_55_15
Last ObjectModification: 2018_09_27-AM-10_43_58

Theory : list!


Home Index