Nuprl Lemma : disjoint_sublists_witness
∀[T:Type]
  ∀L1,L2,L:T List.
    (disjoint_sublists(T;L1;L2;L)
    
⇒ (∃f:ℕ||L1|| + ||L2|| ⟶ ℕ||L||
         (Inj(ℕ||L1|| + ||L2||;ℕ||L||;f)
         ∧ (∀i:ℕ||L1|| + ||L2||
              (L1[i] = L[f i] ∈ T supposing i < ||L1|| ∧ L2[i - ||L1||] = L[f i] ∈ T supposing ||L1|| ≤ i)))))
Proof
Definitions occuring in Statement : 
disjoint_sublists: disjoint_sublists(T;L1;L2;L)
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
inject: Inj(A;B;f)
, 
int_seg: {i..j-}
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
disjoint_sublists: disjoint_sublists(T;L1;L2;L)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than: a < b
, 
bfalse: ff
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
decidable: Dec(P)
, 
squash: ↓T
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
ge: i ≥ j 
, 
nat: ℕ
, 
inject: Inj(A;B;f)
Lemmas referenced : 
disjoint_sublists_wf, 
list_wf, 
lt_int_wf, 
length_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
int_seg_wf, 
lelt_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
subtract_wf, 
int_seg_properties, 
decidable__le, 
add-is-int-iff, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
false_wf, 
decidable__lt, 
itermAdd_wf, 
int_term_value_add_lemma, 
all_wf, 
equal-wf-T-base, 
assert_wf, 
le_int_wf, 
le_wf, 
bnot_wf, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
uiff_transitivity, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
inject_wf, 
select_wf, 
non_neg_length, 
length_wf_nat, 
nat_properties, 
int_subtype_base, 
increasing_inj
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
dependent_pairFormation, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
unionElimination, 
equalityElimination, 
sqequalRule, 
independent_isectElimination, 
applyEquality, 
functionExtensionality, 
natural_numberEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
independent_functionElimination, 
voidElimination, 
addEquality, 
pointwiseFunctionality, 
imageElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
independent_pairEquality, 
axiomEquality, 
productEquality, 
isectEquality, 
applyLambdaEquality, 
hyp_replacement
Latex:
\mforall{}[T:Type]
    \mforall{}L1,L2,L:T  List.
        (disjoint\_sublists(T;L1;L2;L)
        {}\mRightarrow{}  (\mexists{}f:\mBbbN{}||L1||  +  ||L2||  {}\mrightarrow{}  \mBbbN{}||L||
                  (Inj(\mBbbN{}||L1||  +  ||L2||;\mBbbN{}||L||;f)
                  \mwedge{}  (\mforall{}i:\mBbbN{}||L1||  +  ||L2||
                            (L1[i]  =  L[f  i]  supposing  i  <  ||L1||
                            \mwedge{}  L2[i  -  ||L1||]  =  L[f  i]  supposing  ||L1||  \mleq{}  i)))))
Date html generated:
2017_10_01-AM-08_35_44
Last ObjectModification:
2017_07_26-PM-04_25_53
Theory : list!
Home
Index