Nuprl Lemma : sublist_occurence_wf
∀[T:Type]. ∀[L1,L2:T List]. ∀[f:ℕ||L1|| ⟶ ℕ||L2||].  (sublist_occurence(T;L1;L2;f) ∈ ℙ)
Proof
Definitions occuring in Statement : 
sublist_occurence: sublist_occurence(T;L1;L2;f), 
length: ||as||, 
list: T List, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
sublist_occurence: sublist_occurence(T;L1;L2;f), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
prop: ℙ, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
int_seg: {i..j-}, 
guard: {T}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
less_than: a < b, 
squash: ↓T, 
ge: i ≥ j , 
nat: ℕ
Lemmas referenced : 
list_wf, 
le_wf, 
nat_properties, 
lelt_wf, 
non_neg_length, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
int_seg_properties, 
select_wf, 
equal_wf, 
all_wf, 
length_wf, 
int_seg_wf, 
subtype_rel_dep_function, 
length_wf_nat, 
increasing_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
productEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
natural_numberEquality, 
lambdaEquality, 
because_Cache, 
intEquality, 
independent_isectElimination, 
lambdaFormation, 
setElimination, 
rename, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
setEquality, 
axiomEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2:T  List].  \mforall{}[f:\mBbbN{}||L1||  {}\mrightarrow{}  \mBbbN{}||L2||].    (sublist\_occurence(T;L1;L2;f)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-01_57_25
Last ObjectModification:
2016_01_15-PM-11_30_41
Theory : list!
Home
Index