Nuprl Lemma : sublist_occurence_wf

[T:Type]. ∀[L1,L2:T List]. ∀[f:ℕ||L1|| ⟶ ℕ||L2||].  (sublist_occurence(T;L1;L2;f) ∈ ℙ)


Proof




Definitions occuring in Statement :  sublist_occurence: sublist_occurence(T;L1;L2;f) length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  sublist_occurence: sublist_occurence(T;L1;L2;f) uall: [x:A]. B[x] member: t ∈ T prop: and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x] int_seg: {i..j-} guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top less_than: a < b squash: T ge: i ≥  nat:
Lemmas referenced :  list_wf le_wf nat_properties lelt_wf non_neg_length int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties select_wf equal_wf all_wf length_wf int_seg_wf subtype_rel_dep_function length_wf_nat increasing_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut productEquality lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis applyEquality natural_numberEquality lambdaEquality because_Cache intEquality independent_isectElimination lambdaFormation setElimination rename productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination dependent_set_memberEquality equalityTransitivity equalitySymmetry setEquality axiomEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2:T  List].  \mforall{}[f:\mBbbN{}||L1||  {}\mrightarrow{}  \mBbbN{}||L2||].    (sublist\_occurence(T;L1;L2;f)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-01_57_25
Last ObjectModification: 2016_01_15-PM-11_30_41

Theory : list!


Home Index