Nuprl Lemma : fn_array_wf
∀[Val:Type]. ∀[n:ℕ].  (fn_array{i:l}(Val;n) ∈ array{i:l}(Val;n))
Proof
Definitions occuring in Statement : 
fn_array: fn_array{i:l}(Val;n)
, 
array: array{i:l}(Val;n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
fn_array: fn_array{i:l}(Val;n)
, 
array: array{i:l}(Val;n)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mk_array: mk_array(Arr;idx;upd;newarray)
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exposed-it: exposed-it
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
Lemmas referenced : 
int_seg_wf, 
istype-universe, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
set_subtype_base, 
lelt_wf, 
istype-int, 
int_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
ifthenelse_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_pairEquality_alt, 
functionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
closedConclusion, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
lambdaEquality_alt, 
applyEquality, 
functionIsType, 
inhabitedIsType, 
universeIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairEquality, 
isect_memberEquality_alt, 
axiomEquality, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation_alt, 
equalityIsType2, 
baseApply, 
baseClosed, 
intEquality, 
promote_hyp, 
instantiate, 
cumulativity, 
voidElimination, 
productIsType, 
isectIsType, 
universeEquality
Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].    (fn\_array\{i:l\}(Val;n)  \mmember{}  array\{i:l\}(Val;n))
Date html generated:
2019_10_15-AM-10_59_29
Last ObjectModification:
2018_10_11-PM-06_55_12
Theory : monads
Home
Index