Nuprl Lemma : fps-elim-x-elim-y
∀[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x,y:X]. ∀[g:PowerSeries(X;r)].
  (g(x:=0)(y:=0) = g(y:=0)(x:=0) ∈ PowerSeries(X;r))
Proof
Definitions occuring in Statement : 
fps-elim-x: f(x:=0)
, 
power-series: PowerSeries(X;r)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
fps-elim-x: f(x:=0)
, 
fps-coeff: f[b]
, 
fps-elim: fps-elim(x)
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
crng: CRng
, 
rng: Rng
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
power-series: PowerSeries(X;r)
Lemmas referenced : 
fps-ext, 
fps-elim-x_wf, 
bag-deq-member_wf, 
bool_wf, 
eqtt_to_assert, 
assert-bag-deq-member, 
rng_zero_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
bag-member_wf, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
cumulativity, 
hypothesis, 
productElimination, 
independent_isectElimination, 
lambdaFormation, 
sqequalRule, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
independent_functionElimination, 
voidElimination, 
applyEquality, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x,y:X].  \mforall{}[g:PowerSeries(X;r)].
    (g(x:=0)(y:=0)  =  g(y:=0)(x:=0))
Date html generated:
2018_05_21-PM-09_59_20
Last ObjectModification:
2017_07_26-PM-06_33_49
Theory : power!series
Home
Index