Nuprl Lemma : qabs-difference-zero

[r,s:ℚ].  uiff(|r s| ≤ 0;r s ∈ ℚ)


Proof




Definitions occuring in Statement :  qabs: |r| qle: r ≤ s qsub: s rationals: uiff: uiff(P;Q) uall: [x:A]. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: subtype_rel: A ⊆B implies:  Q iff: ⇐⇒ Q rev_implies:  Q true: True qsub: s squash: T guard: {T}
Lemmas referenced :  equal-wf-T-base rationals_wf qsub_wf equal_wf iff_weakening_uiff qle_wf qabs_wf qabs-qle-zero qle_witness uiff_wf int-subtype-rationals qadd_wf qmul_wf squash_wf true_wf qadd_ac_1_q qadd_comm_q qinverse_q mon_ident_q iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality baseClosed addLevel productElimination independent_isectElimination natural_numberEquality applyEquality because_Cache sqequalRule independent_functionElimination cumulativity independent_pairEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry applyLambdaEquality minusEquality lambdaEquality imageElimination universeEquality imageMemberEquality hyp_replacement

Latex:
\mforall{}[r,s:\mBbbQ{}].    uiff(|r  -  s|  \mleq{}  0;r  =  s)



Date html generated: 2018_05_21-PM-11_53_00
Last ObjectModification: 2017_07_26-PM-06_45_20

Theory : rationals


Home Index