Nuprl Lemma : qabs-difference-zero
∀[r,s:ℚ].  uiff(|r - s| ≤ 0;r = s ∈ ℚ)
Proof
Definitions occuring in Statement : 
qabs: |r|
, 
qle: r ≤ s
, 
qsub: r - s
, 
rationals: ℚ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
true: True
, 
qsub: r - s
, 
squash: ↓T
, 
guard: {T}
Lemmas referenced : 
equal-wf-T-base, 
rationals_wf, 
qsub_wf, 
equal_wf, 
iff_weakening_uiff, 
qle_wf, 
qabs_wf, 
qabs-qle-zero, 
qle_witness, 
uiff_wf, 
int-subtype-rationals, 
qadd_wf, 
qmul_wf, 
squash_wf, 
true_wf, 
qadd_ac_1_q, 
qadd_comm_q, 
qinverse_q, 
mon_ident_q, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
baseClosed, 
addLevel, 
productElimination, 
independent_isectElimination, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
sqequalRule, 
independent_functionElimination, 
cumulativity, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
minusEquality, 
lambdaEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
hyp_replacement
Latex:
\mforall{}[r,s:\mBbbQ{}].    uiff(|r  -  s|  \mleq{}  0;r  =  s)
Date html generated:
2018_05_21-PM-11_53_00
Last ObjectModification:
2017_07_26-PM-06_45_20
Theory : rationals
Home
Index