Nuprl Lemma : qabs-squared

[r:ℚ]. ((|r| |r|) (r r) ∈ ℚ)


Proof




Definitions occuring in Statement :  qabs: |r| qmul: s rationals: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] qabs: |r| member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False squash: T subtype_rel: A ⊆B true: True iff: ⇐⇒ Q rev_implies:  Q callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a)
Lemmas referenced :  valueall-type-has-valueall rationals_wf rationals-valueall-type qpositive_wf bool_wf eqtt_to_assert qmul_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot squash_wf true_wf qmul_assoc int-subtype-rationals iff_weakening_equal qmul_ac_1_qrng qinv_inv_q evalall-reduce
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut hypothesis because_Cache introduction extract_by_obid sqequalHypSubstitution isectElimination thin independent_isectElimination hypothesisEquality lambdaFormation unionElimination equalityElimination productElimination sqequalRule dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination applyEquality lambdaEquality imageElimination universeEquality minusEquality natural_numberEquality imageMemberEquality baseClosed callbyvalueReduce

Latex:
\mforall{}[r:\mBbbQ{}].  ((|r|  *  |r|)  =  (r  *  r))



Date html generated: 2018_05_21-PM-11_51_47
Last ObjectModification: 2017_07_26-PM-06_44_41

Theory : rationals


Home Index