Nuprl Lemma : qabs-squared
∀[r:ℚ]. ((|r| * |r|) = (r * r) ∈ ℚ)
Proof
Definitions occuring in Statement : 
qabs: |r|
, 
qmul: r * s
, 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
qabs: |r|
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
Lemmas referenced : 
valueall-type-has-valueall, 
rationals_wf, 
rationals-valueall-type, 
qpositive_wf, 
bool_wf, 
eqtt_to_assert, 
qmul_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
squash_wf, 
true_wf, 
qmul_assoc, 
int-subtype-rationals, 
iff_weakening_equal, 
qmul_ac_1_qrng, 
qinv_inv_q, 
evalall-reduce
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
hypothesis, 
because_Cache, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
independent_isectElimination, 
hypothesisEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
sqequalRule, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
universeEquality, 
minusEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
callbyvalueReduce
Latex:
\mforall{}[r:\mBbbQ{}].  ((|r|  *  |r|)  =  (r  *  r))
Date html generated:
2018_05_21-PM-11_51_47
Last ObjectModification:
2017_07_26-PM-06_44_41
Theory : rationals
Home
Index