Nuprl Lemma : qadd-qmin

[a,b,c:ℚ].  ((a qmin(b;c)) qmin(a b;a c) ∈ ℚ)


Proof




Definitions occuring in Statement :  qmin: qmin(x;y) qadd: s rationals: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qmin: qmin(x;y) true: True all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff squash: T prop: not: ¬A false: False guard: {T} rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  rationals_wf q_le_wf bool_wf equal-wf-T-base assert_wf qle_wf qadd_wf bnot_wf not_wf uiff_transitivity2 eqtt_to_assert assert-q_le-eq uiff_transitivity eqff_to_assert assert_of_bnot squash_wf true_wf equal_wf qadd_preserves_qle
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry baseClosed natural_numberEquality lambdaFormation unionElimination equalityElimination independent_functionElimination productElimination independent_isectElimination applyEquality lambdaEquality imageElimination universeEquality imageMemberEquality dependent_functionElimination voidElimination

Latex:
\mforall{}[a,b,c:\mBbbQ{}].    ((a  +  qmin(b;c))  =  qmin(a  +  b;a  +  c))



Date html generated: 2018_05_21-PM-11_56_37
Last ObjectModification: 2017_07_26-PM-06_47_05

Theory : rationals


Home Index