Nuprl Lemma : qdot-linear2

[as,bs:ℚ List]. ∀[r:ℚ].  qdot(as;qv-mul(r;bs)) (r qdot(as;bs)) ∈ ℚ supposing dimension(as) dimension(bs) ∈ ℤ


Proof




Definitions occuring in Statement :  qv-mul: qv-mul(r;bs) qv-dim: dimension(as) qdot: qdot(as;bs) qmul: s rationals: list: List uimplies: supposing a uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a qdot: qdot(as;bs) squash: T prop: so_lambda: λ2x.t[x] int_seg: {i..j-} guard: {T} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top qv-dim: dimension(as) subtype_rel: A ⊆B so_apply: x[s] nat: ge: i ≥  true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf qsum_wf qmul_wf select_wf rationals_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma qv-mul_wf dim-qv-mul subtype_rel_list top_wf intformeq_wf int_formula_prop_eq_lemma int_seg_wf prod_sum_l_q qv-dim_wf nat_properties iff_weakening_equal select-qv-mul list_wf qmul_comm_qrng qmul_ac_1_qrng
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality because_Cache natural_numberEquality sqequalRule setElimination rename independent_isectElimination productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll applyLambdaEquality imageMemberEquality baseClosed independent_functionElimination functionEquality dependent_set_memberEquality axiomEquality

Latex:
\mforall{}[as,bs:\mBbbQ{}  List].  \mforall{}[r:\mBbbQ{}].
    qdot(as;qv-mul(r;bs))  =  (r  *  qdot(as;bs))  supposing  dimension(as)  =  dimension(bs)



Date html generated: 2018_05_22-AM-00_20_20
Last ObjectModification: 2017_07_26-PM-06_54_55

Theory : rationals


Home Index