Nuprl Lemma : qexp-qabs

[a:ℚ]. ∀[n:ℕ].  (|a| ↑ |a ↑ n| ∈ ℚ)


Proof




Definitions occuring in Statement :  qexp: r ↑ n qabs: |r| rationals: nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q true: True squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q qabs: |r| callbyvalueall: callbyvalueall evalall: evalall(t) qmul: s ifthenelse: if then else fi  btrue: tt qpositive: qpositive(r) lt_int: i <j nat_plus: +
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf rationals_wf qabs_wf equal_wf squash_wf true_wf qexp-zero iff_weakening_equal int-subtype-rationals qmul_wf qexp_wf le_wf qabs-qmul exp_unroll_q
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality unionElimination applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality because_Cache imageMemberEquality baseClosed productElimination callbyvalueReduce sqleReflexivity isintReduceTrue dependent_set_memberEquality

Latex:
\mforall{}[a:\mBbbQ{}].  \mforall{}[n:\mBbbN{}].    (|a|  \muparrow{}  n  =  |a  \muparrow{}  n|)



Date html generated: 2018_05_22-AM-00_01_33
Last ObjectModification: 2017_07_26-PM-06_50_13

Theory : rationals


Home Index