Nuprl Lemma : qmax-assoc

[x,y,z:ℚ].  (qmax(qmax(x;y);z) qmax(x;qmax(y;z)) ∈ ℚ)


Proof




Definitions occuring in Statement :  qmax: qmax(x;y) rationals: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qmax: qmax(x;y) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: guard: {T} iff: ⇐⇒ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False squash: T true: True subtype_rel: A ⊆B not: ¬A
Lemmas referenced :  q_le_wf bool_wf eqtt_to_assert assert-q_le-eq iff_weakening_equal eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot not_wf qle_transitivity_qorder squash_wf true_wf qle_complement_qorder qless_transitivity_2_qorder qless_transitivity qless_irreflexivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination independent_functionElimination sqequalRule because_Cache dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity voidElimination applyEquality lambdaEquality imageElimination natural_numberEquality imageMemberEquality baseClosed universeEquality isect_memberEquality axiomEquality

Latex:
\mforall{}[x,y,z:\mBbbQ{}].    (qmax(qmax(x;y);z)  =  qmax(x;qmax(y;z)))



Date html generated: 2018_05_21-PM-11_55_27
Last ObjectModification: 2017_07_26-PM-06_46_13

Theory : rationals


Home Index