Nuprl Lemma : qmin-symmetry

[x,y:ℚ].  (qmin(x;y) qmin(y;x) ∈ ℚ)


Proof




Definitions occuring in Statement :  qmin: qmin(x;y) rationals: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  rev_implies:  Q iff: ⇐⇒ Q bfalse: ff ifthenelse: if then else fi  and: P ∧ Q uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 all: x:A. B[x] false: False implies:  Q not: ¬A prop: uimplies: supposing a guard: {T} qmin: qmin(x;y) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  qless_irreflexivity qless_transitivity qle_complement_qorder iff_weakening_equal assert_of_bnot eqff_to_assert iff_weakening_uiff iff_transitivity assert-q_le-eq eqtt_to_assert uiff_transitivity2 istype-void istype-assert not_wf bnot_wf qle_antisymmetry qle_wf assert_wf bool_wf equal-wf-T-base q_le_wf
Rules used in proof :  dependent_functionElimination equalityIstype voidElimination independent_pairFormation productElimination independent_functionElimination equalityElimination unionElimination lambdaFormation_alt functionIsType universeIsType independent_isectElimination baseClosed equalitySymmetry equalityTransitivity extract_by_obid inhabitedIsType isectIsTypeImplies axiomEquality hypothesisEquality thin isectElimination isect_memberEquality_alt sqequalHypSubstitution sqequalRule because_Cache hypothesis cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[x,y:\mBbbQ{}].    (qmin(x;y)  =  qmin(y;x))



Date html generated: 2019_10_29-AM-07_43_36
Last ObjectModification: 2019_10_18-PM-00_56_06

Theory : rationals


Home Index