Nuprl Lemma : rat-point-in-cube-interior-not-in-face

[k:ℕ]. ∀[x:ℕk ⟶ ℚ]. ∀[a:ℚCube(k)].
  ∀f:ℚCube(k). (f ≤  rat-point-in-cube(k;x;f)  (f a ∈ ℚCube(k))) supposing rat-point-in-cube-interior(k;x;a)


Proof




Definitions occuring in Statement :  rat-point-in-cube-interior: rat-point-in-cube-interior(k;x;a) rat-point-in-cube: rat-point-in-cube(k;x;c) rat-cube-face: c ≤ d rational-cube: Cube(k) rationals: int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q rational-cube: Cube(k) rat-point-in-cube-interior: rat-point-in-cube-interior(k;x;a) rat-cube-face: c ≤ d rat-point-in-cube: rat-point-in-cube(k;x;c) rational-interval: Interval rat-interval-face: I ≤ J pi1: fst(t) pi2: snd(t) rat-point-interval: [a] and: P ∧ Q or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] top: Top prop: decidable: Dec(P) guard: {T} false: False uiff: uiff(P;Q) subtype_rel: A ⊆B nat:
Lemmas referenced :  pi2_wf rationals_wf pi1_wf_top istype-void qle_wf decidable__qless qless_transitivity_2_qorder qless_irreflexivity qless_complement_qorder qle_antisymmetry qle_transitivity_qorder equal_wf rational-interval_wf qless_wf rat-point-in-cube_wf rat-cube-face_wf rat-point-in-cube-interior_wf rational-cube_wf int_seg_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt functionExtensionality rename sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality applyEquality inhabitedIsType hypothesis productElimination sqequalRule unionElimination applyLambdaEquality extract_by_obid isectElimination lambdaEquality_alt independent_pairEquality isect_memberEquality_alt voidElimination promote_hyp equalitySymmetry hyp_replacement independent_functionElimination because_Cache independent_isectElimination productIsType universeIsType functionIsType unionIsType equalityIstype equalityTransitivity axiomEquality functionIsTypeImplies isectIsTypeImplies natural_numberEquality setElimination

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[x:\mBbbN{}k  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[a:\mBbbQ{}Cube(k)].
    \mforall{}f:\mBbbQ{}Cube(k).  (f  \mleq{}  a  {}\mRightarrow{}  rat-point-in-cube(k;x;f)  {}\mRightarrow{}  (f  =  a)) 
    supposing  rat-point-in-cube-interior(k;x;a)



Date html generated: 2020_05_20-AM-09_19_01
Last ObjectModification: 2019_11_02-PM-07_42_01

Theory : rationals


Home Index