Nuprl Lemma : rat-point-in-face
∀[k:ℕ]. ∀[x:ℕk ⟶ ℚ]. ∀[c,d:ℚCube(k)].
  (rat-point-in-cube(k;x;c)) supposing (rat-point-in-cube(k;x;d) and d ≤ c and (↑Inhabited(c)))
Proof
Definitions occuring in Statement : 
inhabited-rat-cube: Inhabited(c)
, 
rat-point-in-cube: rat-point-in-cube(k;x;c)
, 
rat-cube-face: c ≤ d
, 
rational-cube: ℚCube(k)
, 
rationals: ℚ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
rat-point-in-cube: rat-point-in-cube(k;x;c)
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rat-cube-face: c ≤ d
, 
rational-cube: ℚCube(k)
, 
implies: P 
⇒ Q
, 
rational-interval: ℚInterval
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
prop: ℙ
, 
nat: ℕ
, 
rat-interval-face: I ≤ J
, 
inhabited-rat-interval: Inhabited(I)
, 
rat-point-interval: [a]
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
top: Top
, 
cand: A c∧ B
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
assert-inhabited-rat-cube, 
qle_witness, 
rat-point-in-cube_wf, 
rat-cube-face_wf, 
istype-assert, 
inhabited-rat-cube_wf, 
rational-cube_wf, 
int_seg_wf, 
rationals_wf, 
istype-nat, 
pi2_wf, 
pi1_wf_top, 
istype-void, 
qle_transitivity_qorder, 
qle_weakening_eq_qorder, 
rational-interval_wf, 
subtype_rel_self, 
qle_wf, 
assert-q_le-eq, 
iff_weakening_equal, 
q_le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
lambdaFormation_alt, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
productElimination, 
independent_isectElimination, 
applyEquality, 
inhabitedIsType, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality_alt, 
independent_pairEquality, 
functionIsTypeImplies, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
functionIsType, 
natural_numberEquality, 
setElimination, 
rename, 
unionElimination, 
applyLambdaEquality, 
voidElimination, 
independent_pairFormation, 
unionIsType, 
productIsType
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[x:\mBbbN{}k  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[c,d:\mBbbQ{}Cube(k)].
    (rat-point-in-cube(k;x;c))  supposing  (rat-point-in-cube(k;x;d)  and  d  \mleq{}  c  and  (\muparrow{}Inhabited(c)))
Date html generated:
2020_05_20-AM-09_18_38
Last ObjectModification:
2019_11_02-PM-05_00_04
Theory : rationals
Home
Index