Nuprl Lemma : rat-point-in-face

[k:ℕ]. ∀[x:ℕk ⟶ ℚ]. ∀[c,d:ℚCube(k)].
  (rat-point-in-cube(k;x;c)) supposing (rat-point-in-cube(k;x;d) and d ≤ and (↑Inhabited(c)))


Proof




Definitions occuring in Statement :  inhabited-rat-cube: Inhabited(c) rat-point-in-cube: rat-point-in-cube(k;x;c) rat-cube-face: c ≤ d rational-cube: Cube(k) rationals: int_seg: {i..j-} nat: assert: b uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a rat-point-in-cube: rat-point-in-cube(k;x;c) all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q rat-cube-face: c ≤ d rational-cube: Cube(k) implies:  Q rational-interval: Interval pi1: fst(t) pi2: snd(t) prop: nat: rat-interval-face: I ≤ J inhabited-rat-interval: Inhabited(I) rat-point-interval: [a] or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] top: Top cand: c∧ B guard: {T} subtype_rel: A ⊆B iff: ⇐⇒ Q
Lemmas referenced :  assert-inhabited-rat-cube qle_witness rat-point-in-cube_wf rat-cube-face_wf istype-assert inhabited-rat-cube_wf rational-cube_wf int_seg_wf rationals_wf istype-nat pi2_wf pi1_wf_top istype-void qle_transitivity_qorder qle_weakening_eq_qorder rational-interval_wf subtype_rel_self qle_wf assert-q_le-eq iff_weakening_equal q_le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution lambdaFormation_alt hypothesis dependent_functionElimination thin hypothesisEquality extract_by_obid isectElimination productElimination independent_isectElimination applyEquality inhabitedIsType equalityIstype equalityTransitivity equalitySymmetry independent_functionElimination because_Cache sqequalRule lambdaEquality_alt independent_pairEquality functionIsTypeImplies universeIsType isect_memberEquality_alt isectIsTypeImplies functionIsType natural_numberEquality setElimination rename unionElimination applyLambdaEquality voidElimination independent_pairFormation unionIsType productIsType

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[x:\mBbbN{}k  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[c,d:\mBbbQ{}Cube(k)].
    (rat-point-in-cube(k;x;c))  supposing  (rat-point-in-cube(k;x;d)  and  d  \mleq{}  c  and  (\muparrow{}Inhabited(c)))



Date html generated: 2020_05_20-AM-09_18_38
Last ObjectModification: 2019_11_02-PM-05_00_04

Theory : rationals


Home Index