Nuprl Lemma : Kleisli-adjunction_wf

[C:SmallCategory]. ∀[M:Monad(C)].  (Kl(C;M) ∈ KlF(C;M) -| KlG(C;M))


Proof




Definitions occuring in Statement :  Kleisli-adjunction: Kl(C;M) Kleisli-right: KlG(C;M) Kleisli-left: KlF(C;M) Kleisli-cat: Kl(C;M) cat-monad: Monad(C) counit-unit-adjunction: -| G small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T Kleisli-adjunction: Kl(C;M) all: x:A. B[x] so_lambda: λ2x.t[x] Kleisli-right: KlG(C;M) Kleisli-left: KlF(C;M) Kleisli-cat: Kl(C;M) top: Top so_lambda: so_lambda3 so_apply: x[s1;s2;s3] so_apply: x[s] mk-cat: mk-cat uimplies: supposing a cat_comp: f counit-unit-equations: counit-unit-equations(D;C;F;G;eps;eta) and: P ∧ Q cand: c∧ B squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q cat-ob: cat-ob(C) pi1: fst(t) cat-arrow: cat-arrow(C) pi2: snd(t)
Lemmas referenced :  mk-adjunction_wf Kleisli-cat_wf Kleisli-left_wf Kleisli-right_wf ob_mk_functor_lemma cat_arrow_triple_lemma cat-ob_wf monad-unit_wf cat_comp_tuple_lemma arrow_mk_functor_lemma cat_id_tuple_lemma cat_ob_pair_lemma equal_wf squash_wf true_wf cat-arrow_wf monad-fun_wf cat-comp-assoc monad-extend_wf cat-id_wf iff_weakening_equal cat-comp_wf monad-unit-extend cat-comp-ident cat-monad_wf small-category_wf subtype_rel-equal cat-comp-ident1 cat-comp-ident2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache dependent_functionElimination hypothesis lambdaEquality isect_memberEquality voidElimination voidEquality independent_isectElimination lambdaFormation applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination independent_pairFormation axiomEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[M:Monad(C)].    (Kl(C;M)  \mmember{}  KlF(C;M)  -|  KlG(C;M))



Date html generated: 2020_05_20-AM-08_00_03
Last ObjectModification: 2017_07_28-AM-09_21_10

Theory : small!categories


Home Index