Nuprl Lemma : yoneda-embedding_wf
∀[C:SmallCategory]. (yoneda-embedding(C) ∈ Functor(C;FUN(op-cat(C);TypeCat)))
Proof
Definitions occuring in Statement : 
yoneda-embedding: yoneda-embedding(C)
, 
type-cat: TypeCat
, 
op-cat: op-cat(C)
, 
functor-cat: FUN(C1;C2)
, 
cat-functor: Functor(C1;C2)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
yoneda-embedding: yoneda-embedding(C)
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
so_lambda: so_lambda3, 
so_apply: x[s1;s2;s3]
, 
rep-pre-sheaf: rep-pre-sheaf(C;X)
, 
functor-ob: ob(F)
, 
type-cat: TypeCat
, 
pi1: fst(t)
, 
functor-arrow: arrow(F)
, 
pi2: snd(t)
, 
compose: f o g
, 
true: True
, 
squash: ↓T
, 
prop: ℙ
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
trans-comp: t1 o t2
, 
identity-trans: identity-trans(C;D;F)
Lemmas referenced : 
small-category_wf, 
small-category-subtype, 
functor-cat_wf, 
op-cat_wf, 
type-cat_wf, 
functor_cat_ob_lemma, 
rep-pre-sheaf_wf, 
cat-ob_wf, 
functor_cat_arrow_lemma, 
mk-nat-trans_wf, 
cat-arrow_wf, 
functor_cat_comp_lemma, 
functor_cat_id_lemma, 
mk-functor_wf, 
cat_arrow_triple_lemma, 
cat-comp_wf, 
subtype_rel-equal, 
cat_ob_op_lemma, 
cat_comp_tuple_lemma, 
op-cat-arrow, 
equal_wf, 
squash_wf, 
true_wf, 
cat-comp-assoc, 
iff_weakening_equal, 
ap_mk_nat_trans_lemma, 
all_wf, 
functor-ob_wf, 
functor-arrow_wf, 
cat-functor_wf, 
cat_id_tuple_lemma, 
cat-comp-ident
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
sqequalHypSubstitution, 
sqequalRule, 
thin, 
instantiate, 
isectElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
lambdaEquality, 
independent_isectElimination, 
lambdaFormation, 
functionExtensionality, 
natural_numberEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
functionEquality
Latex:
\mforall{}[C:SmallCategory].  (yoneda-embedding(C)  \mmember{}  Functor(C;FUN(op-cat(C);TypeCat)))
Date html generated:
2020_05_20-AM-07_53_12
Last ObjectModification:
2017_07_28-AM-09_19_36
Theory : small!categories
Home
Index