Nuprl Lemma : mk_lambdas_fun_wf

[T,U:Type]. ∀[m:ℕ]. ∀[A:ℕm ⟶ Type]. ∀[F:(funtype(m;A;T) ⟶ T) ⟶ U].  (mk_lambdas_fun(F;m) ∈ funtype(m;A;U))


Proof




Definitions occuring in Statement :  mk_lambdas_fun: mk_lambdas_fun(F;m) funtype: funtype(n;A;T) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mk_lambdas_fun: mk_lambdas_fun(F;m) int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top subtype_rel: A ⊆B funtype: funtype(n;A;T) primrec: primrec(n;b;c) so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} uiff: uiff(P;Q) subtract: m squash: T less_than: a < b true: True
Lemmas referenced :  nat_wf add-zero int_formula_prop_eq_lemma intformeq_wf decidable__equal_int add-member-int_seg2 int_term_value_subtract_lemma itermSubtract_wf subtract_wf subtype_rel-equal int_seg_properties decidable__le int_seg_subtype int_seg_wf subtype_rel_dep_function le_wf funtype_wf subtype_rel_self lelt_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermVar_wf itermAdd_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_properties false_wf mk_lambdas-fun_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation hypothesis setElimination rename dependent_functionElimination addEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll applyEquality because_Cache instantiate universeEquality productElimination imageElimination functionExtensionality imageMemberEquality baseClosed axiomEquality equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}[T,U:Type].  \mforall{}[m:\mBbbN{}].  \mforall{}[A:\mBbbN{}m  {}\mrightarrow{}  Type].  \mforall{}[F:(funtype(m;A;T)  {}\mrightarrow{}  T)  {}\mrightarrow{}  U].
    (mk\_lambdas\_fun(F;m)  \mmember{}  funtype(m;A;U))



Date html generated: 2016_05_15-PM-02_09_51
Last ObjectModification: 2016_01_15-PM-10_21_52

Theory : untyped!computation


Home Index