Nuprl Lemma : select_fun_ap_is_last1
∀[g:Base]. ∀[m1,m2:ℕ].
  (select_fun_ap(partial_ap_gen(g;(m1 + m2) + 1;m1;m2 + 1);m2 + 1;m2) ~ select_fun_last(g;m1 + m2))
Proof
Definitions occuring in Statement : 
select_fun_last: select_fun_last(g;m)
, 
select_fun_ap: select_fun_ap(g;n;m)
, 
partial_ap_gen: partial_ap_gen(g;n;s;m)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
add: n + m
, 
natural_number: $n
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
select_fun_last: select_fun_last(g;m)
, 
partial_ap_gen: partial_ap_gen(g;n;s;m)
, 
select_fun_ap: select_fun_ap(g;n;m)
, 
uimplies: b supposing a
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
sq_type: SQType(T)
, 
guard: {T}
, 
mk_lambdas: mk_lambdas(F;m)
, 
and: P ∧ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
mk_lambdas_fun: mk_lambdas_fun(F;m)
, 
mk_lambdas-fun: mk_lambdas-fun(F;G;n;m)
, 
le_int: i ≤z j
, 
lt_int: i <z j
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
less_than': less_than'(a;b)
, 
true: True
, 
bfalse: ff
, 
assert: ↑b
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
nat_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
primrec0_lemma, 
mk_lambdas_fun_lambdas, 
decidable__le, 
intformand_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
le_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
lelt_wf, 
bfalse_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
le_int_wf, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
btrue_wf, 
mk_lambdas_compose, 
add-commutes, 
nat_wf, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
because_Cache, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
dependent_set_memberEquality, 
addEquality, 
independent_pairFormation, 
productElimination, 
lambdaFormation, 
equalityElimination, 
promote_hyp, 
sqequalAxiom
Latex:
\mforall{}[g:Base].  \mforall{}[m1,m2:\mBbbN{}].
    (select\_fun\_ap(partial\_ap\_gen(g;(m1  +  m2)  +  1;m1;m2  +  1);m2  +  1;m2)  \msim{}  select\_fun\_last(g;m1  +  m2))
Date html generated:
2017_10_01-AM-08_41_04
Last ObjectModification:
2017_07_26-PM-04_28_23
Theory : untyped!computation
Home
Index