Nuprl Lemma : select_fun_ap_is_last1

[g:Base]. ∀[m1,m2:ℕ].
  (select_fun_ap(partial_ap_gen(g;(m1 m2) 1;m1;m2 1);m2 1;m2) select_fun_last(g;m1 m2))


Proof




Definitions occuring in Statement :  select_fun_last: select_fun_last(g;m) select_fun_ap: select_fun_ap(g;n;m) partial_ap_gen: partial_ap_gen(g;n;s;m) nat: uall: [x:A]. B[x] add: m natural_number: $n base: Base sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T select_fun_last: select_fun_last(g;m) partial_ap_gen: partial_ap_gen(g;n;s;m) select_fun_ap: select_fun_ap(g;n;m) uimplies: supposing a nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: sq_type: SQType(T) guard: {T} mk_lambdas: mk_lambdas(F;m) and: P ∧ Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B mk_lambdas_fun: mk_lambdas_fun(F;m) mk_lambdas-fun: mk_lambdas-fun(F;G;n;m) le_int: i ≤j lt_int: i <j bnot: ¬bb ifthenelse: if then else fi  btrue: tt bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) less_than': less_than'(a;b) true: True bfalse: ff assert: b
Lemmas referenced :  subtype_base_sq int_subtype_base nat_properties decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermSubtract_wf itermAdd_wf itermVar_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf primrec0_lemma mk_lambdas_fun_lambdas decidable__le intformand_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_le_lemma le_wf decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf bfalse_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert le_int_wf equal_wf bool_cases_sqequal bool_subtype_base assert-bnot btrue_wf mk_lambdas_compose add-commutes nat_wf base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis hypothesisEquality setElimination rename dependent_functionElimination because_Cache unionElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality computeAll equalityTransitivity equalitySymmetry independent_functionElimination dependent_set_memberEquality addEquality independent_pairFormation productElimination lambdaFormation equalityElimination promote_hyp sqequalAxiom

Latex:
\mforall{}[g:Base].  \mforall{}[m1,m2:\mBbbN{}].
    (select\_fun\_ap(partial\_ap\_gen(g;(m1  +  m2)  +  1;m1;m2  +  1);m2  +  1;m2)  \msim{}  select\_fun\_last(g;m1  +  m2))



Date html generated: 2017_10_01-AM-08_41_04
Last ObjectModification: 2017_07_26-PM-04_28_23

Theory : untyped!computation


Home Index