Nuprl Lemma : cubical-path-0-fillterm

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[j:{j:ℕ| ¬j ∈ I+i} ]. ∀[rho:Gamma(I+i)]. ∀[phi:𝔽(I)].
  ∀u:{I+i,s(phi) ⊢ _:(A)<rho> iota}
    ∀[a0:cubical-path-0(Gamma;A;I;i;rho;phi;u)]
      ((a0 (i0)(rho) s)
       ∈ cubical-path-0(Gamma;A;I+i;j;m(i;j)(rho);fl-join(I+i;s(phi);(i=0));fillterm(Gamma;A;I;i;j;rho;a0;u)))


Proof




Definitions occuring in Statement :  fillterm: fillterm(Gamma;A;I;i;j;rho;a0;u) cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type-ap-morph: (u f) cubical-type: {X ⊢ _} subset-iota: iota cubical-subset: I,psi fl-join: fl-join(I;x;y) face-presheaf: 𝔽 fl0: (x=0) csm-comp: F context-map: <rho> formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-m: m(i;j) nc-0: (i0) nc-s: s add-name: I+i fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] all: x:A. B[x] not: ¬A member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] face-presheaf: 𝔽 I_cube: A(I) names: names(I) subtype_rel: A ⊆B nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0) cube-set-restriction: f(s) fl-join: fl-join(I;x;y) name-morph-satisfies: (psi f) 1 pi2: snd(t) functor-ob: ob(F) pi1: fst(t) lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice true: True fillterm: fillterm(Gamma;A;I;i;j;rho;a0;u) cubical-term-at: u(a) nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) compose: g dM: dM(I) dM-lift: dM-lift(I;J;f) nc-0: (i0) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) sq_type: SQType(T) bnot: ¬bb assert: b label: ...$L... t context-map: <rho> subset-iota: iota csm-comp: F csm-ap: (s)x functor-arrow: arrow(F) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  ob_pair_lemma fl0_wf trivial-member-add-name1 fset-member_wf nat_wf int-deq_wf add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le f-subset-add-name1 f-subset-add-name cubical-path-0_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-term_wf cubical-subset_wf cube-set-restriction_wf face-presheaf_wf2 nc-s_wf csm-ap-type_wf cubical-type-cumulativity csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf I_cube_wf istype-nat strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-void fset_wf cubical-type_wf cubical_set_wf cubical-type-ap-morph_wf nc-0_wf subtype_rel-equal cubical-type-at_wf nc-m_wf equal_wf cube-set-restriction-comp iff_weakening_equal nc-0-s-commute nh-comp_wf nc-m-nc-0 cubical-path-condition_wf fl-join_wf fillterm_wf cubical-subset-I_cube-member iff_transitivity lattice-point_wf face_lattice_wf lattice-join_wf fl-morph_wf subtype_rel_self subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf or_wf squash_wf true_wf istype-universe fl-morph-join face_lattice-1-join-irreducible eq_int_wf eqtt_to_assert assert_of_eq_int subtype_base_sq int_subtype_base eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int dM-lift-inc isdM0_wf names-hom_wf nh-comp-assoc assert-isdM0 cubical-type-ap-morph-comp nh-comp-nc-m-eq2 fset-member-add-name set_subtype_base not_wf s-comp-nc-0' istype-cubical-type-at cubical-type-ap-morph-comp-eq iff_weakening_uiff assert_wf dM_wf dM0_wf member-cubical-subset-I_cube fl-morph-comp2 fl-morph-fl0-is-1 csm-ap-type-at cubical-term-at_wf cubical-subset-I_cube name-morph-satisfies_wf name-morph-satisfies-comp nh-id-right s-comp-nc-0
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :memTop,  hypothesis isectElimination because_Cache dependent_set_memberEquality_alt universeIsType applyEquality hypothesisEquality setElimination rename natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality independent_pairFormation voidElimination axiomEquality equalityTransitivity equalitySymmetry instantiate isect_memberEquality_alt isectIsTypeImplies inhabitedIsType functionIsTypeImplies setIsType functionIsType intEquality imageElimination imageMemberEquality baseClosed productElimination productEquality cumulativity isectEquality universeEquality equalityIstype unionIsType equalityElimination promote_hyp productIsType applyLambdaEquality inrFormation_alt sqequalBase hyp_replacement

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  I+i\}  ].
\mforall{}[rho:Gamma(I+i)].  \mforall{}[phi:\mBbbF{}(I)].
    \mforall{}u:\{I+i,s(phi)  \mvdash{}  \_:(A)<rho>  o  iota\}
        \mforall{}[a0:cubical-path-0(Gamma;A;I;i;rho;phi;u)]
            ((a0  (i0)(rho)  s)
              \mmember{}  cubical-path-0(Gamma;A;I+i;j;m(i;j)(rho);fl-join(I+i;s(phi);(i=0));...))



Date html generated: 2020_05_20-PM-03_54_07
Last ObjectModification: 2020_04_09-PM-03_36_02

Theory : cubical!type!theory


Home Index