Nuprl Lemma : fillterm_wf

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[j:{j:ℕ| ¬j ∈ I+i} ]. ∀[rho:Gamma(I+i)]. ∀[phi:𝔽(I)].
[u:{I+i,s(phi) ⊢ _:(A)<rho> iota}]. ∀[a0:cubical-path-0(Gamma;A;I;i;rho;phi;u)].
  (fillterm(Gamma;A;I;i;j;rho;a0;u) ∈ {I+i+j,s(fl-join(I+i;s(phi);(i=0))) ⊢ _:(A)<m(i;j)(rho)> iota})


Proof




Definitions occuring in Statement :  fillterm: fillterm(Gamma;A;I;i;j;rho;a0;u) cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} subset-iota: iota cubical-subset: I,psi fl-join: fl-join(I;x;y) face-presheaf: 𝔽 fl0: (x=0) csm-comp: F context-map: <rho> formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-m: m(i;j) nc-s: s add-name: I+i fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T face-presheaf: 𝔽 I_cube: A(I) all: x:A. B[x] names: names(I) subtype_rel: A ⊆B nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: cubical-term: {X ⊢ _:A} fillterm: fillterm(Gamma;A;I;i;j;rho;a0;u) so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} names-hom: I ⟶ J bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff DeMorgan-algebra: DeMorganAlgebra sq_type: SQType(T) bnot: ¬bb assert: b squash: T context-map: <rho> subset-iota: iota csm-comp: F csm-ap: (s)x compose: g functor-arrow: arrow(F) cube-set-restriction: f(s) iff: ⇐⇒ Q rev_implies:  Q true: True cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) fl-join: fl-join(I;x;y) name-morph-satisfies: (psi f) 1 pi2: snd(t) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) functor-ob: ob(F) pi1: fst(t) lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] eq_atom: =a y bdd-distributive-lattice: BoundedDistributiveLattice label: ...$L... t nc-s: s nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) dM: dM(I) dM-lift: dM-lift(I;J;f) isdM0: isdM0(x) null: null(as) dM0: 0 lattice-0: 0 free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) empty-fset: {} nil: [] cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0) cubical-subset: I,psi rep-sub-sheaf: rep-sub-sheaf(C;X;P) cat-arrow: cat-arrow(C) cube-cat: CubeCat rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  ob_pair_lemma fl0_wf trivial-member-add-name1 fset-member_wf nat_wf int-deq_wf add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le f-subset-add-name1 f-subset-add-name names-hom_wf I_cube_wf cubical-subset_wf cube-set-restriction_wf nc-s_wf fl-join_wf istype-cubical-type-at csm-ap-type_wf csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf nc-m_wf cubical-type-ap-morph_wf cubical-path-0_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-term_wf face-presheaf_wf2 cubical-type-cumulativity istype-nat strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-void fset_wf cubical-type_wf cubical_set_wf cubical-subset-I_cube-member isdM0_wf subtype_rel_self trivial-member-add-name2 eqtt_to_assert eqff_to_assert names_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot assert-isdM0 csm-ap-type-at cubical-type-at_wf squash_wf true_wf istype-universe cube-set-restriction-comp nc-0_wf nh-comp_wf iff_weakening_equal nh-comp-nc-m-eq2 iff_weakening_uiff assert_wf dM0_wf iff_transitivity face_lattice_wf fl-morph_wf or_wf fl-morph-join face_lattice-1-join-irreducible fl-morph-restriction fl-morph-comp2 nh-comp-assoc nh-comp-nc-m-s member-cubical-subset-I_cube cubical-term-at_wf fl-morph-comp fl-morph-fl0-is-1 dM-lift-inc cubical-subset-restriction btrue_wf equal-wf-T-base dM-lift-0 dM-lift_wf2 cubical-type-ap-morph-comp csm-cubical-type-ap-morph nh-comp-nc-m-eq lattice-1_wf fl-morph-1 s-comp-s cubical-subset-I_cube name-morph-satisfies_wf cubical-term-at-morph equal_functionality_wrt_subtype_rel2 subtype_rel_universe1 subtype_rel-equal csm-ap_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :memTop,  hypothesis isectElimination because_Cache dependent_set_memberEquality_alt universeIsType applyEquality hypothesisEquality setElimination rename natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality independent_pairFormation voidElimination functionIsType instantiate equalityIstype axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies inhabitedIsType setIsType intEquality productElimination lambdaFormation_alt equalityElimination functionEquality productEquality cumulativity isectEquality promote_hyp imageElimination universeEquality imageMemberEquality baseClosed hyp_replacement unionIsType productIsType applyLambdaEquality setEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  I+i\}  ].
\mforall{}[rho:Gamma(I+i)].  \mforall{}[phi:\mBbbF{}(I)].  \mforall{}[u:\{I+i,s(phi)  \mvdash{}  \_:(A)<rho>  o  iota\}].
\mforall{}[a0:cubical-path-0(Gamma;A;I;i;rho;phi;u)].
    (fillterm(Gamma;A;I;i;j;rho;a0;u)  \mmember{}  \{I+i+j,s(fl-join(I+i;s(phi);(i=0)))  \mvdash{}  \_
                                                                              :(A)<m(i;j)(rho)>  o  iota\})



Date html generated: 2020_05_20-PM-03_53_45
Last ObjectModification: 2020_04_09-PM-04_19_44

Theory : cubical!type!theory


Home Index