Nuprl Lemma : IdNotHomotopicConst-implies-BrowerFPT
∀n:ℕ. BrouwerFPT(n + 1) supposing IdNotHomotopicConst(n)
Proof
Definitions occuring in Statement : 
IdNotHomotopicConst: IdNotHomotopicConst(n)
, 
BrouwerFPT: BrouwerFPT(n)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
IdNotHomotopicConst: IdNotHomotopicConst(n)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
NoBallRetraction: NoBallRetraction(n)
, 
real-unit-ball: B(n)
, 
subtype_rel: A ⊆r B
, 
compose: f o g
, 
cand: A c∧ B
, 
req-vec: req-vec(n;x;y)
, 
so_lambda: λ2x.t[x]
, 
real-vec: ℝ^n
, 
so_apply: x[s]
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
guard: {T}
, 
i-member: r ∈ I
, 
rccint: [l, u]
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
rge: x ≥ y
, 
sphere-map-eq: sphere-map-eq(n;f;g)
, 
real-unit-sphere: S(n)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
sphere-map: sphere-map(n)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than': less_than'(a;b)
, 
real-vec-mul: a*X
Lemmas referenced : 
NoBallRetraction-implies-BrouwerFPT, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
real-unit-ball_wf, 
req-vec_wf, 
req_wf, 
real-vec-norm_wf, 
int-to-real_wf, 
IdNotHomotopicConst_wf, 
istype-nat, 
sphere-map-from-ball-map, 
compose_wf, 
sq_stable__all, 
int_seg_wf, 
sq_stable__req, 
req_witness, 
real-vec-mul_wf, 
rleq_wf, 
real_wf, 
i-member_wf, 
rccint_wf, 
rmul_wf, 
rabs_wf, 
rmul_preserves_rleq2, 
zero-rleq-rabs, 
itermSubtract_wf, 
itermMultiply_wf, 
rleq_functionality, 
real-vec-norm-mul, 
req_weakening, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rabs-of-nonneg, 
real-vec-mul_functionality, 
real-unit-sphere-subtype-ball, 
real-unit-sphere_wf, 
req-vec_weakening, 
member_rccint_lemma, 
rleq-int, 
istype-false, 
real-vec-norm-0, 
req_functionality, 
req_transitivity, 
rmul_functionality, 
rmul-one, 
rmul-identity1, 
req-vec_functionality, 
rmul-zero-both
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
rename, 
extract_by_obid, 
dependent_set_memberEquality_alt, 
addEquality, 
setElimination, 
hypothesis, 
natural_numberEquality, 
isectElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
independent_pairFormation, 
universeIsType, 
productElimination, 
productIsType, 
functionIsType, 
because_Cache, 
applyEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
setIsType, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}n:\mBbbN{}.  BrouwerFPT(n  +  1)  supposing  IdNotHomotopicConst(n)
Date html generated:
2019_10_30-AM-11_30_05
Last ObjectModification:
2019_08_06-AM-11_39_04
Theory : real!vectors
Home
Index