Nuprl Lemma : fine-iter-subdiv
∀k:ℕ
  ∀[n:ℕ]
    ∀K:{K:n-dim-complex| 0 < ||K||} . ∀M:ℕ+.
      ∃j:ℕ
       ∀[x,y:ℝ^k].
         mdist(rn-prod-metric(k);x;y) ≤ (r1/r(M)) 
         supposing ¬¬(∃c:ℚCube(k). ((c ∈ K'^(j)) ∧ in-rat-cube(k;y;c) ∧ in-rat-cube(k;x;c)))
Proof
Definitions occuring in Statement : 
in-rat-cube: in-rat-cube(k;p;c)
, 
rn-prod-metric: rn-prod-metric(n)
, 
real-vec: ℝ^n
, 
mdist: mdist(d;x;y)
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
int-to-real: r(n)
, 
l_member: (x ∈ l)
, 
length: ||as||
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
rational-cube-complex: n-dim-complex
, 
rational-cube: ℚCube(k)
Definitions unfolded in proof : 
req_int_terms: t1 ≡ t2
, 
rdiv: (x/y)
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
nequal: a ≠ b ∈ T 
, 
int_nzero: ℤ-o
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
true: True
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
less_than: a < b
, 
rge: x ≥ y
, 
rev_uimplies: rev_uimplies(P;Q)
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
nat: ℕ
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
guard: {T}
, 
rneq: x ≠ y
, 
nat_plus: ℕ+
, 
false: False
, 
prop: ℙ
, 
rational-cube-complex: n-dim-complex
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
cand: A c∧ B
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
le: A ≤ B
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
real_term_value_mul_lemma, 
real_term_value_sub_lemma, 
real_polynomial_null, 
req-iff-rsub-is-0, 
rmul-rinv3, 
req_transitivity, 
rleq_functionality, 
itermSubtract_wf, 
rinv_wf2, 
rmul_preserves_rleq, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
int_formula_prop_le_lemma, 
intformle_wf, 
decidable__le, 
exp_wf_nat_plus, 
rleq-int-fractions, 
nequal_wf, 
subtype_base_sq, 
exp_wf3, 
int_nzero-rational, 
int-subtype-rationals, 
equal_functionality_wrt_subtype_rel2, 
int_subtype_base, 
le_wf, 
set_subtype_base, 
rationals_wf, 
equal-wf-base, 
not_functionality_wrt_implies, 
rneq-int, 
istype-le, 
log-property, 
log_wf, 
r-archimedean, 
rleq_weakening_equal, 
rleq_functionality_wrt_implies, 
implies_weakening_uimplies, 
rat-complex-diameter-bound, 
exp-positive-stronger, 
exp_wf2, 
rmul_wf, 
rat-complex-diameter_wf, 
rat-complex-iter-subdiv-pos-length, 
istype-nat, 
length_wf, 
istype-less_than, 
rational-cube-complex_wf, 
nat_plus_wf, 
rless_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__lt, 
nat_plus_properties, 
nat_properties, 
rless-int, 
int-to-real_wf, 
rdiv_wf, 
rn-prod-metric_wf, 
mdist_wf, 
rleq_wf, 
istype-void, 
in-rat-cube_wf, 
Error :rat-complex-iter-subdiv_wf, 
l_member_wf, 
rational-cube_wf, 
real-vec_wf, 
le_witness_for_triv, 
rat-complex-iter-subdiv-diameter
Rules used in proof : 
sqequalBase, 
cumulativity, 
instantiate, 
intEquality, 
baseApply, 
multiplyEquality, 
baseClosed, 
imageMemberEquality, 
equalityIstype, 
dependent_set_memberEquality_alt, 
setIsType, 
independent_pairFormation, 
voidElimination, 
int_eqEquality, 
approximateComputation, 
unionElimination, 
independent_functionElimination, 
inrFormation_alt, 
natural_numberEquality, 
closedConclusion, 
applyEquality, 
rename, 
setElimination, 
productIsType, 
functionIsType, 
because_Cache, 
universeIsType, 
isectIsType, 
dependent_pairFormation_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsTypeImplies, 
independent_isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
productElimination, 
dependent_functionElimination, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
sqequalRule, 
isect_memberFormation_alt, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}k:\mBbbN{}
    \mforall{}[n:\mBbbN{}]
        \mforall{}K:\{K:n-dim-complex|  0  <  ||K||\}  .  \mforall{}M:\mBbbN{}\msupplus{}.
            \mexists{}j:\mBbbN{}
              \mforall{}[x,y:\mBbbR{}\^{}k].
                  mdist(rn-prod-metric(k);x;y)  \mleq{}  (r1/r(M)) 
                  supposing  \mneg{}\mneg{}(\mexists{}c:\mBbbQ{}Cube(k).  ((c  \mmember{}  K'\^{}(j))  \mwedge{}  in-rat-cube(k;y;c)  \mwedge{}  in-rat-cube(k;x;c)))
Date html generated:
2019_11_04-PM-04_44_04
Last ObjectModification:
2019_10_31-PM-03_37_20
Theory : real!vectors
Home
Index