Nuprl Lemma : fine-iter-subdiv

k:ℕ
  ∀[n:ℕ]
    ∀K:{K:n-dim-complex| 0 < ||K||} . ∀M:ℕ+.
      ∃j:ℕ
       ∀[x,y:ℝ^k].
         mdist(rn-prod-metric(k);x;y) ≤ (r1/r(M)) 
         supposing ¬¬(∃c:ℚCube(k). ((c ∈ K'^(j)) ∧ in-rat-cube(k;y;c) ∧ in-rat-cube(k;x;c)))


Proof




Definitions occuring in Statement :  in-rat-cube: in-rat-cube(k;p;c) rn-prod-metric: rn-prod-metric(n) real-vec: ^n mdist: mdist(d;x;y) rdiv: (x/y) rleq: x ≤ y int-to-real: r(n) l_member: (x ∈ l) length: ||as|| nat_plus: + nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q set: {x:A| B[x]}  natural_number: $n rational-cube-complex: n-dim-complex rational-cube: Cube(k)
Definitions unfolded in proof :  req_int_terms: t1 ≡ t2 rdiv: (x/y) uiff: uiff(P;Q) sq_type: SQType(T) nequal: a ≠ b ∈  int_nzero: -o so_apply: x[s] so_lambda: λ2x.t[x] true: True less_than': less_than'(a;b) squash: T less_than: a < b rge: x ≥ y rev_uimplies: rev_uimplies(P;Q) top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) ge: i ≥  nat: rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q guard: {T} rneq: x ≠ y nat_plus: + false: False prop: rational-cube-complex: n-dim-complex subtype_rel: A ⊆B implies:  Q not: ¬A cand: c∧ B exists: x:A. B[x] and: P ∧ Q le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  real_term_value_var_lemma real_term_value_const_lemma real_term_value_mul_lemma real_term_value_sub_lemma real_polynomial_null req-iff-rsub-is-0 rmul-rinv3 req_transitivity rleq_functionality itermSubtract_wf rinv_wf2 rmul_preserves_rleq int_term_value_mul_lemma itermMultiply_wf int_formula_prop_le_lemma intformle_wf decidable__le exp_wf_nat_plus rleq-int-fractions nequal_wf subtype_base_sq exp_wf3 int_nzero-rational int-subtype-rationals equal_functionality_wrt_subtype_rel2 int_subtype_base le_wf set_subtype_base rationals_wf equal-wf-base not_functionality_wrt_implies rneq-int istype-le log-property log_wf r-archimedean rleq_weakening_equal rleq_functionality_wrt_implies implies_weakening_uimplies rat-complex-diameter-bound exp-positive-stronger exp_wf2 rmul_wf rat-complex-diameter_wf rat-complex-iter-subdiv-pos-length istype-nat length_wf istype-less_than rational-cube-complex_wf nat_plus_wf rless_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf full-omega-unsat decidable__lt nat_plus_properties nat_properties rless-int int-to-real_wf rdiv_wf rn-prod-metric_wf mdist_wf rleq_wf istype-void in-rat-cube_wf Error :rat-complex-iter-subdiv_wf,  l_member_wf rational-cube_wf real-vec_wf le_witness_for_triv rat-complex-iter-subdiv-diameter
Rules used in proof :  sqequalBase cumulativity instantiate intEquality baseApply multiplyEquality baseClosed imageMemberEquality equalityIstype dependent_set_memberEquality_alt setIsType independent_pairFormation voidElimination int_eqEquality approximateComputation unionElimination independent_functionElimination inrFormation_alt natural_numberEquality closedConclusion applyEquality rename setElimination productIsType functionIsType because_Cache universeIsType isectIsType dependent_pairFormation_alt isectIsTypeImplies inhabitedIsType functionIsTypeImplies independent_isectElimination equalitySymmetry equalityTransitivity productElimination dependent_functionElimination lambdaEquality_alt isect_memberEquality_alt sqequalRule isect_memberFormation_alt hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}k:\mBbbN{}
    \mforall{}[n:\mBbbN{}]
        \mforall{}K:\{K:n-dim-complex|  0  <  ||K||\}  .  \mforall{}M:\mBbbN{}\msupplus{}.
            \mexists{}j:\mBbbN{}
              \mforall{}[x,y:\mBbbR{}\^{}k].
                  mdist(rn-prod-metric(k);x;y)  \mleq{}  (r1/r(M)) 
                  supposing  \mneg{}\mneg{}(\mexists{}c:\mBbbQ{}Cube(k).  ((c  \mmember{}  K'\^{}(j))  \mwedge{}  in-rat-cube(k;y;c)  \mwedge{}  in-rat-cube(k;x;c)))



Date html generated: 2019_11_04-PM-04_44_04
Last ObjectModification: 2019_10_31-PM-03_37_20

Theory : real!vectors


Home Index