Nuprl Lemma : partition-lemma

e:ℝ
  ((r0 < e)
   (∀n:ℕ+. ∀f:ℕn ⟶ ℝ.
        ∀x:ℝ. ∃i:ℕn. (|x i| ≤ e) supposing 0≤x≤(n 1) supposing ∀i:ℕ1. r0≤(f (i 1)) i≤e))


Proof




Definitions occuring in Statement :  rbetween: x≤y≤z rleq: x ≤ y rless: x < y rabs: |x| rsub: y int-to-real: r(n) real: int_seg: {i..j-} nat_plus: + uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] subtract: m add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q subtract: m uimplies: supposing a member: t ∈ T rbetween: x≤y≤z and: P ∧ Q rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B not: ¬A false: False uall: [x:A]. B[x] int_seg: {i..j-} uiff: uiff(P;Q) lelt: i ≤ j < k nat_plus: + rless: x < y sq_exists: x:A [B[x]] satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: subtype_rel: A ⊆B less_than': less_than'(a;b) less_than: a < b squash: T true: True so_lambda: λ2x.t[x] so_apply: x[s] real: sq_stable: SqStable(P) decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q guard: {T} rev_uimplies: rev_uimplies(P;Q) absval: |i| req_int_terms: t1 ≡ t2 rsub: y rge: x ≥ y rgt: x > y cand: c∧ B itermConstant: "const"
Lemmas referenced :  less_than'_wf rsub_wf int_seg_wf add-member-int_seg2 nat_plus_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf lelt_wf subtract_wf int-to-real_wf false_wf rbetween_wf real_wf all_wf add-subtract-cancel sq_stable__less_than decidable__le intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__lt itermAdd_wf int_term_value_add_lemma isect_wf exists_wf rleq_wf rabs_wf primrec-wf-nat-plus nat_plus_wf rless_wf rleq_antisymmetry req-iff-rsub-is-0 rleq-int rless_transitivity2 rleq_weakening_rless rleq_functionality rabs_functionality rsub_functionality req_weakening req_transitivity rabs-int real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_const_lemma trivial-rsub-rless rless-cases subtype_rel_self satisfiable-full-omega-tt int_seg_subtype subtype_rel_dep_function trivial-rless-radd radd_wf rabs-difference-symmetry rabs-of-nonneg radd-preserves-rleq rminus_wf uiff_transitivity radd_comm radd-ac radd_functionality radd-rminus-both radd-zero-both rleq_functionality_wrt_implies rsub_functionality_wrt_rleq rleq_weakening_equal subtract-add-cancel add-associates add-swap add-commutes zero-add squash_wf true_wf and_wf equal_wf rmax_lb rabs-as-rmax radd-rminus-assoc rmul_wf rless-int rmul_reverses_rleq_iff real_term_polynomial itermMultiply_wf itermMinus_wf real_term_value_mul_lemma real_term_value_minus_lemma real_term_value_add_lemma rleq_weakening radd_functionality_wrt_rless1 regular-int-seq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule isect_memberFormation introduction sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality productElimination independent_pairEquality voidElimination extract_by_obid isectElimination applyEquality functionExtensionality natural_numberEquality hypothesis because_Cache setElimination rename independent_isectElimination dependent_set_memberEquality independent_pairFormation approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry imageMemberEquality baseClosed functionEquality addEquality imageElimination unionElimination computeAll hyp_replacement setEquality

Latex:
\mforall{}e:\mBbbR{}
    ((r0  <  e)
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbR{}.
                \mforall{}x:\mBbbR{}.  \mexists{}i:\mBbbN{}n.  (|x  -  f  i|  \mleq{}  e)  supposing  f  0\mleq{}x\mleq{}f  (n  -  1) 
                supposing  \mforall{}i:\mBbbN{}n  -  1.  r0\mleq{}(f  (i  +  1))  -  f  i\mleq{}e))



Date html generated: 2019_10_29-AM-10_49_02
Last ObjectModification: 2019_01_27-PM-07_16_01

Theory : reals


Home Index