Nuprl Lemma : partition-lemma
∀e:ℝ
  ((r0 < e)
  
⇒ (∀n:ℕ+. ∀f:ℕn ⟶ ℝ.
        ∀x:ℝ. ∃i:ℕn. (|x - f i| ≤ e) supposing f 0≤x≤f (n - 1) supposing ∀i:ℕn - 1. r0≤(f (i + 1)) - f i≤e))
Proof
Definitions occuring in Statement : 
rbetween: x≤y≤z
, 
rleq: x ≤ y
, 
rless: x < y
, 
rabs: |x|
, 
rsub: x - y
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtract: n - m
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
rbetween: x≤y≤z
, 
and: P ∧ Q
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
not: ¬A
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
int_seg: {i..j-}
, 
uiff: uiff(P;Q)
, 
lelt: i ≤ j < k
, 
nat_plus: ℕ+
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
real: ℝ
, 
sq_stable: SqStable(P)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
rev_uimplies: rev_uimplies(P;Q)
, 
absval: |i|
, 
req_int_terms: t1 ≡ t2
, 
rsub: x - y
, 
rge: x ≥ y
, 
rgt: x > y
, 
cand: A c∧ B
, 
itermConstant: "const"
Lemmas referenced : 
less_than'_wf, 
rsub_wf, 
int_seg_wf, 
add-member-int_seg2, 
nat_plus_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
lelt_wf, 
subtract_wf, 
int-to-real_wf, 
false_wf, 
rbetween_wf, 
real_wf, 
all_wf, 
add-subtract-cancel, 
sq_stable__less_than, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
decidable__lt, 
itermAdd_wf, 
int_term_value_add_lemma, 
isect_wf, 
exists_wf, 
rleq_wf, 
rabs_wf, 
primrec-wf-nat-plus, 
nat_plus_wf, 
rless_wf, 
rleq_antisymmetry, 
req-iff-rsub-is-0, 
rleq-int, 
rless_transitivity2, 
rleq_weakening_rless, 
rleq_functionality, 
rabs_functionality, 
rsub_functionality, 
req_weakening, 
req_transitivity, 
rabs-int, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
trivial-rsub-rless, 
rless-cases, 
subtype_rel_self, 
satisfiable-full-omega-tt, 
int_seg_subtype, 
subtype_rel_dep_function, 
trivial-rless-radd, 
radd_wf, 
rabs-difference-symmetry, 
rabs-of-nonneg, 
radd-preserves-rleq, 
rminus_wf, 
uiff_transitivity, 
radd_comm, 
radd-ac, 
radd_functionality, 
radd-rminus-both, 
radd-zero-both, 
rleq_functionality_wrt_implies, 
rsub_functionality_wrt_rleq, 
rleq_weakening_equal, 
subtract-add-cancel, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
squash_wf, 
true_wf, 
and_wf, 
equal_wf, 
rmax_lb, 
rabs-as-rmax, 
radd-rminus-assoc, 
rmul_wf, 
rless-int, 
rmul_reverses_rleq_iff, 
real_term_polynomial, 
itermMultiply_wf, 
itermMinus_wf, 
real_term_value_mul_lemma, 
real_term_value_minus_lemma, 
real_term_value_add_lemma, 
rleq_weakening, 
radd_functionality_wrt_rless1, 
regular-int-seq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
isect_memberFormation, 
introduction, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_pairEquality, 
voidElimination, 
extract_by_obid, 
isectElimination, 
applyEquality, 
functionExtensionality, 
natural_numberEquality, 
hypothesis, 
because_Cache, 
setElimination, 
rename, 
independent_isectElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
functionEquality, 
addEquality, 
imageElimination, 
unionElimination, 
computeAll, 
hyp_replacement, 
setEquality
Latex:
\mforall{}e:\mBbbR{}
    ((r0  <  e)
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbR{}.
                \mforall{}x:\mBbbR{}.  \mexists{}i:\mBbbN{}n.  (|x  -  f  i|  \mleq{}  e)  supposing  f  0\mleq{}x\mleq{}f  (n  -  1) 
                supposing  \mforall{}i:\mBbbN{}n  -  1.  r0\mleq{}(f  (i  +  1))  -  f  i\mleq{}e))
Date html generated:
2019_10_29-AM-10_49_02
Last ObjectModification:
2019_01_27-PM-07_16_01
Theory : reals
Home
Index