Nuprl Lemma : rv-inner-Pasch
∀n:ℕ. ∀a,b,c,p,q:ℝ^n.  (a-p-c 
⇒ b-q-c 
⇒ (∃x:ℝ^n. ((a ≠ q 
⇒ a-x-q) ∧ (b ≠ p 
⇒ b-x-p))))
Proof
Definitions occuring in Statement : 
rv-between: a-b-c
, 
real-vec-sep: a ≠ b
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rv-between: a-b-c
, 
and: P ∧ Q
, 
real-vec-between: a-b-c
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
rdiv: (x/y)
, 
true: True
, 
rev_uimplies: rev_uimplies(P;Q)
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
cand: A c∧ B
Lemmas referenced : 
rv-between_wf, 
real-vec_wf, 
istype-nat, 
member_rooint_lemma, 
istype-void, 
rmul_preserves_rless, 
int-to-real_wf, 
rmul_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermConstant_wf, 
radd-preserves-rless, 
rsub_wf, 
radd_wf, 
itermAdd_wf, 
rless_transitivity2, 
rleq_weakening_rless, 
rless_functionality, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
real_term_value_add_lemma, 
req_weakening, 
rdiv_wf, 
rless_wf, 
rminus_wf, 
rinv_wf2, 
itermMinus_wf, 
rless-implies-rless, 
req_transitivity, 
radd_functionality, 
rminus_functionality, 
rmul-rinv3, 
real_term_value_minus_lemma, 
rmul_preserves_req, 
iff_weakening_equal, 
subtype_rel_self, 
req_wf, 
squash_wf, 
true_wf, 
real_wf, 
req_functionality, 
rmul_functionality, 
rmul-rinv, 
radd-preserves-req, 
req_inversion, 
real-vec-add_wf, 
real-vec-mul_wf, 
real-vec-sep_wf, 
i-member_wf, 
rooint_wf, 
real-vec-between_functionality, 
req-vec_weakening, 
req-vec_wf, 
req-vec_functionality, 
real-vec-add_functionality, 
req-vec_transitivity, 
real-vec-mul-linear, 
real-vec-mul-mul, 
real-vec-mul_functionality, 
req-vec_inversion, 
real-vec-add-assoc, 
real-vec-add-com
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
rename, 
natural_numberEquality, 
independent_functionElimination, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
independent_pairFormation, 
inrFormation_alt, 
closedConclusion, 
equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
dependent_pairFormation_alt, 
productIsType, 
functionIsType
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c,p,q:\mBbbR{}\^{}n.    (a-p-c  {}\mRightarrow{}  b-q-c  {}\mRightarrow{}  (\mexists{}x:\mBbbR{}\^{}n.  ((a  \mneq{}  q  {}\mRightarrow{}  a-x-q)  \mwedge{}  (b  \mneq{}  p  {}\mRightarrow{}  b-x-p))))
Date html generated:
2019_10_30-AM-08_51_25
Last ObjectModification:
2018_11_21-AM-09_59_45
Theory : reals
Home
Index