Nuprl Lemma : rv-inner-Pasch

n:ℕ. ∀a,b,c,p,q:ℝ^n.  (a-p-c  b-q-c  (∃x:ℝ^n. ((a ≠  a-x-q) ∧ (b ≠  b-x-p))))


Proof




Definitions occuring in Statement :  rv-between: a-b-c real-vec-sep: a ≠ b real-vec: ^n nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rv-between: a-b-c and: P ∧ Q real-vec-between: a-b-c exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] prop: top: Top iff: ⇐⇒ Q rev_implies:  Q guard: {T} uimplies: supposing a uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A rneq: x ≠ y or: P ∨ Q rdiv: (x/y) true: True rev_uimplies: rev_uimplies(P;Q) squash: T subtype_rel: A ⊆B cand: c∧ B
Lemmas referenced :  rv-between_wf real-vec_wf istype-nat member_rooint_lemma istype-void rmul_preserves_rless int-to-real_wf rmul_wf itermSubtract_wf itermMultiply_wf itermVar_wf itermConstant_wf radd-preserves-rless rsub_wf radd_wf itermAdd_wf rless_transitivity2 rleq_weakening_rless rless_functionality req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma real_term_value_add_lemma req_weakening rdiv_wf rless_wf rminus_wf rinv_wf2 itermMinus_wf rless-implies-rless req_transitivity radd_functionality rminus_functionality rmul-rinv3 real_term_value_minus_lemma rmul_preserves_req iff_weakening_equal subtype_rel_self req_wf squash_wf true_wf real_wf req_functionality rmul_functionality rmul-rinv radd-preserves-req req_inversion real-vec-add_wf real-vec-mul_wf real-vec-sep_wf i-member_wf rooint_wf real-vec-between_functionality req-vec_weakening req-vec_wf req-vec_functionality real-vec-add_functionality req-vec_transitivity real-vec-mul-linear real-vec-mul-mul real-vec-mul_functionality req-vec_inversion real-vec-add-assoc real-vec-add-com
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin universeIsType cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis inhabitedIsType dependent_functionElimination isect_memberEquality_alt voidElimination rename natural_numberEquality independent_functionElimination because_Cache independent_isectElimination sqequalRule approximateComputation lambdaEquality_alt int_eqEquality independent_pairFormation inrFormation_alt closedConclusion equalityIsType1 equalityTransitivity equalitySymmetry applyEquality imageElimination imageMemberEquality baseClosed instantiate universeEquality dependent_pairFormation_alt productIsType functionIsType

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c,p,q:\mBbbR{}\^{}n.    (a-p-c  {}\mRightarrow{}  b-q-c  {}\mRightarrow{}  (\mexists{}x:\mBbbR{}\^{}n.  ((a  \mneq{}  q  {}\mRightarrow{}  a-x-q)  \mwedge{}  (b  \mneq{}  p  {}\mRightarrow{}  b-x-p))))



Date html generated: 2019_10_30-AM-08_51_25
Last ObjectModification: 2018_11_21-AM-09_59_45

Theory : reals


Home Index