Nuprl Lemma : strat2play-longer

[g:SimpleGame]. ∀[n:ℕ]. ∀[s:win2strat(g;n)]. ∀[moves:strat2play(g;n;s)]. ∀[x:sequence(Pos(g))].
  ((x ∈ strat2play(g;n;s)) ∧ (seq-truncate(x;||moves||) moves ∈ strat2play(g;n;s))) supposing 
     ((seq-truncate(x;||moves||) moves ∈ sequence(Pos(g))) and 
     (||moves|| ≤ ||x||))


Proof




Definitions occuring in Statement :  strat2play: strat2play(g;n;s) win2strat: win2strat(g;n) sg-pos: Pos(g) simple-game: SimpleGame seq-truncate: seq-truncate(s;n) seq-len: ||s|| sequence: sequence(T) nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B and: P ∧ Q member: t ∈ T equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) not: ¬A subtype_rel: A ⊆B all: x:A. B[x] cand: c∧ B squash: T int_seg: {i..j-} lelt: i ≤ j < k true: True iff: ⇐⇒ Q rev_implies:  Q top: Top uiff: uiff(P;Q) or: P ∨ Q decidable: Dec(P) play-item: moves[i] btrue: tt ifthenelse: if then else fi  subtract: m eq_int: (i =z j) strat2play: strat2play(g;n;s) sq_stable: SqStable(P) sq_type: SQType(T) bfalse: ff bool: 𝔹 unit: Unit it: play-truncate: play-truncate(f;m) play-len: ||moves|| win2strat: win2strat(g;n) less_than: a < b nat_plus: + so_apply: x[s] so_lambda: λ2x.t[x] exists: x:A. B[x]
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf istype-less_than strat2play_subtype istype-false istype-le seq-item_wf less_than_wf squash_wf true_wf istype-int seq-len_wf sg-pos_wf subtype_rel_self iff_weakening_equal seq-truncate-item istype-void int_seg_wf seq-truncate_wf sequence_wf strat2play_wf win2strat_wf subtract-1-ge-0 le_weakening2 istype-nat simple-game_wf le_wf le-add-cancel2 sg-legal1_wf nat_wf lelt_wf le-add-cancel zero-add add-commutes add_functionality_wrt_le not-lt-2 decidable__lt false_wf equal_wf le_transitivity istype-universe sq_stable__le multiply_nat_wf add_nat_wf mul-associates mul_bounds_1a add-is-int-iff zero-mul add-mul-special add-zero add-swap add-associates minus-minus minus-add minus-one-mul-top minus-one-mul condition-implies-le less-iff-le not-le-2 decidable__le subtract_wf win2strat_subtype bool_wf int_subtype_base equal-wf-base not_wf bnot_wf assert_wf le_weakening eq_int_wf bool_cases subtype_base_sq bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot uiff_transitivity le_reflexive seq-len-truncate play-len_wf equal-wf-T-base play-truncate_wf seq-truncate-truncate omega-shadow minus-zero two-mul one-mul not-equal-implies-less le-add-cancel-alt mul-commutes mul-distributes mul-distributes-right set_subtype_base play-item_wf sg-legal2_wf istype-assert istype-sqequal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination Error :lambdaFormation_alt,  natural_numberEquality independent_isectElimination independent_functionElimination voidElimination Error :universeIsType,  Error :lambdaEquality_alt,  dependent_functionElimination axiomEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :isect_memberEquality_alt,  Error :dependent_set_memberEquality_alt,  independent_pairFormation because_Cache applyEquality Error :productIsType,  Error :equalityIstype,  applyLambdaEquality imageMemberEquality baseClosed imageElimination productElimination equalityTransitivity equalitySymmetry instantiate universeEquality independent_pairEquality productEquality intEquality voidEquality isect_memberEquality unionElimination lambdaFormation lambdaEquality dependent_set_memberEquality hyp_replacement multiplyEquality minusEquality addEquality dependentIntersection_memberEquality closedConclusion baseApply dependentIntersectionElimination promote_hyp cumulativity impliesFunctionality equalityElimination setEquality sqequalIntensionalEquality dependent_pairFormation sqequalBase Error :functionIsType,  Error :dependent_pairFormation_alt

Latex:
\mforall{}[g:SimpleGame].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:win2strat(g;n)].  \mforall{}[moves:strat2play(g;n;s)].  \mforall{}[x:sequence(Pos(g))].
    ((x  \mmember{}  strat2play(g;n;s))  \mwedge{}  (seq-truncate(x;||moves||)  =  moves))  supposing 
          ((seq-truncate(x;||moves||)  =  moves)  and 
          (||moves||  \mleq{}  ||x||))



Date html generated: 2019_06_20-PM-00_52_45
Last ObjectModification: 2019_01_02-PM-01_32_08

Theory : co-recursion-2


Home Index