Nuprl Lemma : compose-polynom_wf

[n:ℕ]. ∀[p,q:polynom(n)].  (compose-polynom(n;p;q) ∈ polynom(n))


Proof




Definitions occuring in Statement :  compose-polynom: compose-polynom(n;p;q) polynom: polynom(n) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T compose-polynom: compose-polynom(n;p;q) nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: so_lambda: λ2y.t[x; y] sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b so_apply: x[s1;s2] polynom: polynom(n) polyform-lead-nonzero: polyform-lead-nonzero(n;p) less_than: a < b squash: T
Lemmas referenced :  eq_int_wf uiff_transitivity equal-wf-base bool_wf set_subtype_base le_wf istype-int int_subtype_base assert_wf eqtt_to_assert assert_of_eq_int iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot istype-assert istype-void list_accum_wf polynom_wf subtract_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf istype-le polyconst_wf2 poly-zero_wf polynom_subtype_polyform mul-polynom_wf2 bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot add-polynom_wf istype-nat bool_cases subtype_rel-equal nat_wf base_wf cons_wf nil_wf length_of_cons_lemma length_of_nil_lemma reduce_hd_cons_lemma istype-less_than length_wf intformless_wf int_formula_prop_less_lemma hd_wf polyform_wf subtype_rel_list
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis natural_numberEquality Error :inhabitedIsType,  Error :lambdaFormation_alt,  unionElimination equalityElimination baseApply closedConclusion baseClosed applyEquality intEquality Error :lambdaEquality_alt,  independent_isectElimination because_Cache independent_functionElimination productElimination independent_pairFormation Error :equalityIstype,  sqequalBase equalitySymmetry Error :functionIsType,  voidElimination Error :dependent_set_memberEquality_alt,  dependent_functionElimination approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  Error :universeIsType,  equalityTransitivity promote_hyp instantiate cumulativity axiomEquality Error :isectIsTypeImplies,  imageElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p,q:polynom(n)].    (compose-polynom(n;p;q)  \mmember{}  polynom(n))



Date html generated: 2019_06_20-PM-01_54_05
Last ObjectModification: 2019_01_20-AM-11_55_27

Theory : integer!polynomials


Home Index