Nuprl Lemma : add-polynom_wf

[n:ℕ]. ∀[p,q:polynom(n)].  (add-polynom(n;tt;p;q) ∈ polynom(n))


Proof




Definitions occuring in Statement :  add-polynom: add-polynom(n;rmz;p;q) polynom: polynom(n) nat: btrue: tt uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) polynom: polynom(n) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b le: A ≤ B less_than': less_than'(a;b) int_upper: {i...} add-polynom: add-polynom(n;rmz;p;q) squash: T less_than: a < b nil: [] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] colength: colength(L) cons: [a b] has-valueall: has-valueall(a) has-value: (a)↓ list_ind: list_ind length: ||as|| evalall: evalall(t) callbyvalueall: callbyvalueall iff: ⇐⇒ Q rev_implies:  Q nat_plus: + true: True polyform: polyform(n) nequal: a ≠ b ∈  polyform-lead-nonzero: polyform-lead-nonzero(n;p) sq_stable: SqStable(P)
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than int_seg_properties int_seg_wf subtract-1-ge-0 decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le subtype_rel_self eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int upper_subtype_nat istype-false nequal-le-implies zero-add itermAdd_wf int_term_value_add_lemma istype-nat int_upper_properties le_wf false_wf equal_wf list_wf spread_cons_lemma product_subtype_list list-cases polynom_wf colength_wf_list nat_wf equal-wf-T-base less_than_wf evalall-reduce valueall-type-polynom list-valueall-type valueall-type-has-valueall length_of_nil_lemma null_nil_lemma not_wf bnot_wf assert_wf uiff_transitivity iff_transitivity iff_weakening_uiff assert_of_bnot length_wf int-value-type value-type-has-value length_of_cons_lemma null_cons_lemma cons_wf bfalse_wf polynom-subtype-list le-add-cancel add-commutes add_functionality_wrt_le not-lt-2 rm-zeros_wf top_wf btrue_wf polyform-lead-nonzero_wf subtype_rel_list polyform_wf polynom_subtype_polyform equal-wf-base istype-assert lt_int_wf assert_of_lt_int istype-top reduce_hd_cons_lemma add_nat_plus length_wf_nat nat_plus_properties add-is-int-iff poly-zero_wf sq_stable__polyform-lead-nonzero bool_cases
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :functionIsTypeImplies,  productElimination because_Cache unionElimination applyEquality instantiate applyLambdaEquality Error :dependent_set_memberEquality_alt,  Error :productIsType,  hypothesis_subsumption equalityElimination Error :equalityIstype,  promote_hyp cumulativity addEquality voidEquality isect_memberEquality intEquality lambdaEquality dependent_set_memberEquality dependent_pairFormation lambdaFormation isect_memberFormation imageElimination baseClosed sqleReflexivity callbyvalueReduce impliesFunctionality axiomSqEquality imageMemberEquality lessCases Error :setIsType,  baseApply closedConclusion sqequalBase Error :functionIsType,  pointwiseFunctionality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p,q:polynom(n)].    (add-polynom(n;tt;p;q)  \mmember{}  polynom(n))



Date html generated: 2019_06_20-PM-01_52_19
Last ObjectModification: 2019_01_17-PM-04_36_33

Theory : integer!polynomials


Home Index