Nuprl Lemma : mul-polynom_wf2

[n:ℕ]. ∀[p,q:polynom(n)].  (mul-polynom(n;p;q) ∈ polynom(n))


Proof




Definitions occuring in Statement :  mul-polynom: mul-polynom(n;p;q) polynom: polynom(n) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  decidable: Dec(P) assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q uiff: uiff(P;Q) bfalse: ff it: unit: Unit bool: 𝔹 polyform: polyform(n) subtype_rel: A ⊆B less_than': less_than'(a;b) le: A ≤ B has-value: (a)↓ btrue: tt ifthenelse: if then else fi  eq_int: (i =z j) polynom: polynom(n) subtract: m polyconst: polyconst(n;k) mul-polynom: mul-polynom(n;p;q) prop: and: P ∧ Q top: Top all: x:A. B[x] exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x] rev_implies:  Q iff: ⇐⇒ Q polyform-lead-nonzero: polyform-lead-nonzero(n;p) append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] less_than: a < b squash: T cons: [a b] nat_plus: + true: True so_apply: x[s1;s2] so_lambda: λ2y.t[x; y]
Lemmas referenced :  nat_wf subtract_wf polyconst_wf polyform-value-type polynom_subtype_polyform int_formula_prop_not_lemma intformnot_wf decidable__le value-type-polynom int_formula_prop_eq_lemma intformeq_wf decidable__equal_int subtract-1-ge-0 polynom_wf assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal int_subtype_base eqff_to_assert polyform_wf subtype_rel_self le_wf istype-false poly-zero_wf int-value-type value-type-has-value istype-less_than ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma istype-void int_formula_prop_and_lemma istype-int intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf full-omega-unsat nat_properties assert_of_bnot iff_weakening_uiff iff_transitivity assert_of_eq_int eqtt_to_assert bool_cases istype-assert equal-wf-base not_wf bnot_wf assert_wf eq_int_wf istype-le uiff_transitivity itermSubtract_wf int_term_value_subtract_lemma list-cases length_of_nil_lemma null_nil_lemma list_ind_nil_lemma nil_wf length_wf hd_wf subtype_rel_list product_subtype_list length_of_cons_lemma reduce_hd_cons_lemma null_cons_lemma list_ind_cons_lemma cons_wf append_wf polyconst_wf2 add_nat_plus length_wf_nat decidable__lt length-append nat_plus_properties add-is-int-iff itermAdd_wf int_term_value_add_lemma false_wf map_wf map_cons_lemma map_nil_lemma iff_imp_equal_bool nonzero-mul-polynom assert_functionality_wrt_uiff bfalse_wf assert_of_ff add-polynom_wf eager-accum_wf valueall-type-polynom
Rules used in proof :  int_eqReduceFalseSq int_eqReduceTrueSq Error :equalityIsType1,  multiplyEquality cumulativity instantiate promote_hyp baseClosed closedConclusion baseApply Error :equalityIsType2,  productElimination equalityElimination unionElimination applyEquality Error :dependent_set_memberEquality_alt,  because_Cache intEquality sqleReflexivity callbyvalueReduce Error :functionIsTypeImplies,  Error :inhabitedIsType,  equalitySymmetry equalityTransitivity axiomEquality Error :universeIsType,  independent_pairFormation voidElimination Error :isect_memberEquality_alt,  dependent_functionElimination int_eqEquality Error :lambdaEquality_alt,  Error :dependent_pairFormation_alt,  independent_functionElimination approximateComputation independent_isectElimination natural_numberEquality Error :lambdaFormation_alt,  intWeakElimination sqequalRule rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution Error :functionIsType,  Error :equalityIsType4,  Error :equalityIstype,  sqequalBase imageElimination hypothesis_subsumption applyLambdaEquality pointwiseFunctionality addEquality imageMemberEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p,q:polynom(n)].    (mul-polynom(n;p;q)  \mmember{}  polynom(n))



Date html generated: 2019_06_20-PM-01_54_01
Last ObjectModification: 2019_01_21-PM-10_25_35

Theory : integer!polynomials


Home Index