Nuprl Lemma : nonzero-mul-polynom

[n:ℕ]. ∀[p,q:polynom(n)].
  (poly-zero(n;mul-polynom(n;p;q)) ff) supposing (poly-zero(n;q) ff and poly-zero(n;p) ff)


Proof




Definitions occuring in Statement :  mul-polynom: mul-polynom(n;p;q) polynom: polynom(n) poly-zero: poly-zero(n;p) nat: bfalse: ff bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) mul-polynom: mul-polynom(n;p;q) has-value: (a)↓ poly-zero: poly-zero(n;p) eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt uiff: uiff(P;Q) polynom: polynom(n) rev_uimplies: rev_uimplies(P;Q) bool: 𝔹 unit: Unit it: bfalse: ff bnot: ¬bb assert: b nequal: a ≠ b ∈  iff: ⇐⇒ Q rev_implies:  Q cons: [a b] polyform-lead-nonzero: polyform-lead-nonzero(n;p) true: True le: A ≤ B subtract: m less_than': less_than'(a;b) eager-accum: eager-accum(x,a.f[x; a];y;l) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] polyconst: polyconst(n;k) add-polynom: add-polynom(n;rmz;p;q) callbyvalueall: callbyvalueall evalall: evalall(t) nil: [] length: ||as|| list_ind: list_ind has-valueall: has-valueall(a) squash: T colength: colength(L) less_than: a < b append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] sq_stable: SqStable(P) polyform: polyform(n)
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than int_seg_properties int_seg_wf subtract-1-ge-0 decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le subtype_rel_self value-type-has-value polynom_wf value-type-polynom polyform_wf polyform-value-type polyconst_wf int-value-type poly-zero_wf polynom_subtype_polyform bool_wf bfalse_wf itermAdd_wf int_term_value_add_lemma istype-nat eqff_to_assert eq_int_wf ifthenelse_wf assert_wf bnot_wf not_wf equal-wf-T-base eqtt_to_assert assert_of_eq_int equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int int_entire_a iff_transitivity iff_weakening_uiff assert_of_bnot equal-wf-base le_wf istype-assert bool_cases list-cases null_nil_lemma product_subtype_list null_cons_lemma btrue_wf btrue_neq_bfalse length_of_nil_lemma length_of_cons_lemma length_wf_nat istype-false not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel reduce_hd_cons_lemma map_nil_lemma map_cons_lemma spread_cons_lemma subtype_rel-equal nat_wf base_wf uiff_transitivity evalall-reduce list_wf cons_wf mul-polynom_wf map_wf list-valueall-type valueall-type-polyform valueall-type-has-valueall iff_imp_equal_bool squash_wf true_wf length_wf map_length_nat iff_weakening_equal colength-cons-not-zero colength_wf_list list_ind_cons_lemma append_wf nil_wf void-valueall-type length_append subtype_rel_list top_wf length-singleton length-append length-map sq_stable__le add-is-int-iff false_wf istype-top less_than_wf add-polynom_wf1 subtract-add-cancel add-polynom-length imax_ub
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  axiomEquality Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :functionIsTypeImplies,  productElimination because_Cache unionElimination applyEquality instantiate equalityTransitivity equalitySymmetry applyLambdaEquality Error :dependent_set_memberEquality_alt,  Error :productIsType,  hypothesis_subsumption callbyvalueReduce intEquality cumulativity Error :equalityIstype,  addEquality multiplyEquality baseClosed lambdaFormation equalityElimination dependent_pairFormation promote_hyp impliesFunctionality int_eqReduceFalseSq sqequalBase Error :functionIsType,  minusEquality baseApply closedConclusion sqleReflexivity imageElimination imageMemberEquality universeEquality Error :setIsType,  voidEquality pointwiseFunctionality lessCases axiomSqEquality Error :inrFormation_alt

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p,q:polynom(n)].
    (poly-zero(n;mul-polynom(n;p;q))  =  ff)  supposing  (poly-zero(n;q)  =  ff  and  poly-zero(n;p)  =  ff)



Date html generated: 2019_06_20-PM-01_53_53
Last ObjectModification: 2019_01_17-PM-04_26_17

Theory : integer!polynomials


Home Index