Nuprl Lemma : dep-accum_wf

[A,B:Type]. ∀[C:A ⟶ B ⟶ Type]. ∀[f:very-dep-fun(A;B;a,b.C[a;b])]. ∀[g:a:A ⟶ b:B ⟶ C[a;b]]. ∀[bs:B List].
  (dep-accum(L,b.f[L;b];a,b.g[a;b];bs) ∈ {L:(a:A × b:B × C[a;b]) List| 
                                          vdf-eq(A;f;L) ∧ (map(λx.(fst(snd(x)));L) bs ∈ (B List))} )


Proof




Definitions occuring in Statement :  dep-accum: dep-accum(L,b.f[L; b];a,bb.g[a; bb];bs) very-dep-fun: very-dep-fun(A;B;a,b.C[a; b]) vdf-eq: vdf-eq(A;f;L) map: map(f;as) list: List uall: [x:A]. B[x] so_apply: x[s1;s2] pi1: fst(t) pi2: snd(t) and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  lambda: λx.A[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] dep-accum: dep-accum(L,b.f[L; b];a,bb.g[a; bb];bs) cand: c∧ B vdf-eq: vdf-eq(A;f;L) select: L[n] nil: [] it: firstn: firstn(n;as) so_lambda: so_lambda3 so_apply: x[s1;s2;s3] dep-all: dep-all(n;i.P[i]) true: True map: map(f;as) list_ind: list_ind int_iseg: {i...j} uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit btrue: tt ifthenelse: if then else fi  bfalse: ff assert: b cons: [a b] let: let pi2: snd(t) pi1: fst(t)
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than int_seg_properties int_seg_wf subtract-1-ge-0 decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le subtype_rel_self non_neg_length length_wf last-decomp2 subtype_rel_list top_wf itermAdd_wf int_term_value_add_lemma istype-nat length_wf_nat list_wf very-dep-fun_wf istype-universe eq_int_wf equal-wf-T-base bool_wf assert_wf equal-wf-base le_wf list_accum_nil_lemma nil_wf length_of_nil_lemma stuck-spread istype-base list_ind_nil_lemma vdf-eq_wf map_wf pi1_wf pi2_wf bnot_wf not_wf istype-assert istype-void list_accum_append firstn_wf list_accum_cons_lemma less_than_wf squash_wf true_wf length_firstn_eq subtract-is-int-iff false_wf iff_weakening_equal uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot very-dep-fun-subtype last_wf list-cases null_nil_lemma product_subtype_list null_cons_lemma length_of_cons_lemma append_wf cons_wf implies-vdf-eq-append1 map_append_sq map_cons_lemma map_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination Error :memTop,  independent_pairFormation universeIsType voidElimination axiomEquality equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType productElimination unionElimination applyEquality instantiate because_Cache applyLambdaEquality dependent_set_memberEquality_alt productIsType promote_hyp hypothesis_subsumption imageElimination addEquality isect_memberEquality_alt isectIsTypeImplies functionIsType universeEquality baseClosed intEquality productEquality equalityIstype sqequalBase closedConclusion pointwiseFunctionality baseApply imageMemberEquality equalityElimination dependent_pairEquality_alt

Latex:
\mforall{}[A,B:Type].  \mforall{}[C:A  {}\mrightarrow{}  B  {}\mrightarrow{}  Type].  \mforall{}[f:very-dep-fun(A;B;a,b.C[a;b])].  \mforall{}[g:a:A  {}\mrightarrow{}  b:B  {}\mrightarrow{}  C[a;b]].
\mforall{}[bs:B  List].
    (dep-accum(L,b.f[L;b];a,b.g[a;b];bs)  \mmember{}  \{L:(a:A  \mtimes{}  b:B  \mtimes{}  C[a;b])  List| 
                                                                                    vdf-eq(A;f;L)  \mwedge{}  (map(\mlambda{}x.(fst(snd(x)));L)  =  bs)\}  )



Date html generated: 2020_05_19-PM-09_51_45
Last ObjectModification: 2020_03_09-PM-05_55_48

Theory : list_1


Home Index