Nuprl Lemma : grp_lt_shift_right

[g:OGrp]. ∀[a,b:|g|].  uiff(a < b;e < (b (~ a)))


Proof




Definitions occuring in Statement :  ocgrp: OGrp grp_lt: a < b grp_inv: ~ grp_id: e grp_op: * grp_car: |g| uiff: uiff(P;Q) uall: [x:A]. B[x] infix_ap: y apply: a
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a grp_lt: a < b set_lt: a <b ocgrp: OGrp ocmon: OCMon abmonoid: AbMon mon: Mon subtype_rel: A ⊆B oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) implies:  Q prop: squash: T guard: {T} true: True iff: ⇐⇒ Q rev_implies:  Q infix_ap: y
Lemmas referenced :  grp_inverse igrp_wf grp_wf abgrp_wf ocgrp_subtype_abgrp abgrp_subtype_grp grp_subtype_igrp iff_weakening_equal iabmonoid_wf abmonoid_wf abdmonoid_wf ocmon_wf subtype_rel_transitivity ocgrp_subtype_ocmon ocmon_subtype_abdmonoid abdmonoid_abmonoid abmonoid_subtype_iabmonoid abmonoid_comm grp_sig_wf true_wf squash_wf grp_lt_op_l ocgrp_wf grp_lt_wf grp_inv_wf grp_op_wf set_car_wf grp_car_wf infix_ap_wf grp_id_wf oset_of_ocmon_wf0 set_blt_wf assert_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality isect_memberEquality isectElimination hypothesisEquality lemma_by_obid setElimination rename hypothesis because_Cache applyEquality lambdaEquality functionEquality independent_functionElimination equalityTransitivity equalitySymmetry independent_pairFormation independent_isectElimination imageElimination instantiate natural_numberEquality imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[g:OGrp].  \mforall{}[a,b:|g|].    uiff(a  <  b;e  <  (b  *  (\msim{}  a)))



Date html generated: 2016_05_15-PM-00_13_39
Last ObjectModification: 2016_01_15-PM-11_05_32

Theory : groups_1


Home Index