Nuprl Lemma : grp_lt_shift_right
∀[g:OGrp]. ∀[a,b:|g|].  uiff(a < b;e < (b * (~ a)))
Proof
Definitions occuring in Statement : 
ocgrp: OGrp, 
grp_lt: a < b, 
grp_inv: ~, 
grp_id: e, 
grp_op: *, 
grp_car: |g|, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
infix_ap: x f y, 
apply: f a
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
grp_lt: a < b, 
set_lt: a <p b, 
ocgrp: OGrp, 
ocmon: OCMon, 
abmonoid: AbMon, 
mon: Mon, 
subtype_rel: A ⊆r B, 
oset_of_ocmon: g↓oset, 
dset_of_mon: g↓set, 
set_car: |p|, 
pi1: fst(t), 
implies: P ⇒ Q, 
prop: ℙ, 
squash: ↓T, 
guard: {T}, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
infix_ap: x f y
Lemmas referenced : 
grp_inverse, 
igrp_wf, 
grp_wf, 
abgrp_wf, 
ocgrp_subtype_abgrp, 
abgrp_subtype_grp, 
grp_subtype_igrp, 
iff_weakening_equal, 
iabmonoid_wf, 
abmonoid_wf, 
abdmonoid_wf, 
ocmon_wf, 
subtype_rel_transitivity, 
ocgrp_subtype_ocmon, 
ocmon_subtype_abdmonoid, 
abdmonoid_abmonoid, 
abmonoid_subtype_iabmonoid, 
abmonoid_comm, 
grp_sig_wf, 
true_wf, 
squash_wf, 
grp_lt_op_l, 
ocgrp_wf, 
grp_lt_wf, 
grp_inv_wf, 
grp_op_wf, 
set_car_wf, 
grp_car_wf, 
infix_ap_wf, 
grp_id_wf, 
oset_of_ocmon_wf0, 
set_blt_wf, 
assert_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
isect_memberEquality, 
isectElimination, 
hypothesisEquality, 
lemma_by_obid, 
setElimination, 
rename, 
hypothesis, 
because_Cache, 
applyEquality, 
lambdaEquality, 
functionEquality, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
independent_isectElimination, 
imageElimination, 
instantiate, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality
Latex:
\mforall{}[g:OGrp].  \mforall{}[a,b:|g|].    uiff(a  <  b;e  <  (b  *  (\msim{}  a)))
Date html generated:
2016_05_15-PM-00_13_39
Last ObjectModification:
2016_01_15-PM-11_05_32
Theory : groups_1
Home
Index