Nuprl Lemma : p-mul-int
∀[p:ℕ+]. ∀[k,j:ℤ].  (k(p) * j(p) = k * j(p) ∈ p-adics(p))
Proof
Definitions occuring in Statement : 
p-int: k(p)
, 
p-mul: x * y
, 
p-adics: p-adics(p)
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uimplies: b supposing a
, 
p-int: k(p)
, 
p-mul: x * y
, 
p-reduce: i mod(p^n)
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
int_seg: {i..j-}
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
p-adics-equal, 
p-mul_wf, 
p-int_wf, 
nat_plus_wf, 
exp_wf2, 
nat_plus_subtype_nat, 
modulus_wf_int_mod, 
exp_wf_nat_plus, 
int-subtype-int_mod, 
int_seg_wf, 
eqmod_functionality_wrt_eqmod, 
eqmod_transitivity, 
mod-eqmod, 
multiply_functionality_wrt_eqmod, 
eqmod_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
multiplyEquality, 
productElimination, 
independent_isectElimination, 
lambdaFormation, 
sqequalRule, 
intEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
applyEquality, 
setElimination, 
rename, 
lambdaEquality, 
natural_numberEquality, 
independent_functionElimination
Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[k,j:\mBbbZ{}].    (k(p)  *  j(p)  =  k  *  j(p))
Date html generated:
2018_05_21-PM-03_18_57
Last ObjectModification:
2018_05_19-AM-08_09_57
Theory : rings_1
Home
Index