Nuprl Lemma : p-adics-equal

p:ℕ+. ∀x,y:p-adics(p).  uiff(x y ∈ p-adics(p);∀n:ℕ+((x n) ≡ (y n) mod p^n))


Proof




Definitions occuring in Statement :  p-adics: p-adics(p) eqmod: a ≡ mod m exp: i^n nat_plus: + uiff: uiff(P;Q) all: x:A. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B nat_plus: + p-adics: p-adics(p) int_seg: {i..j-} prop: so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False subtract: m le: A ≤ B less_than': less_than'(a;b) true: True lelt: i ≤ j < k guard: {T} nat: satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top int_nzero: -o nequal: a ≠ b ∈ 
Lemmas referenced :  equal-p-adics eqmod_weakening exp_wf2 nat_plus_subtype_nat int_seg_wf and_wf equal_wf nat_plus_wf p-adics_wf all_wf eqmod_wf decidable__lt false_wf not-lt-2 less-iff-le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf less_than_transitivity2 decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf modulus_base modulus-equal-iff-eqmod int_seg_properties nat_plus_properties decidable__equal_int intformeq_wf int_formula_prop_eq_lemma mod_bounds_1 exp_wf3 subtype_rel_sets nequal_wf equal-wf-base int_subtype_base mod_bounds lelt_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation isect_memberFormation cut introduction axiomEquality hypothesis thin rename extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality productElimination independent_isectElimination dependent_functionElimination applyEquality sqequalRule setElimination because_Cache lambdaEquality natural_numberEquality equalitySymmetry dependent_set_memberEquality equalityTransitivity functionEquality intEquality applyLambdaEquality functionExtensionality addEquality unionElimination voidElimination independent_functionElimination minusEquality approximateComputation dependent_pairFormation int_eqEquality isect_memberEquality voidEquality setEquality baseClosed

Latex:
\mforall{}p:\mBbbN{}\msupplus{}.  \mforall{}x,y:p-adics(p).    uiff(x  =  y;\mforall{}n:\mBbbN{}\msupplus{}.  ((x  n)  \mequiv{}  (y  n)  mod  p\^{}n))



Date html generated: 2018_05_21-PM-03_18_42
Last ObjectModification: 2018_05_19-AM-08_10_23

Theory : rings_1


Home Index