Nuprl Lemma : permr_suptyping

T:Type. ∀Q:T ⟶ ℙ. ∀as,bs:{z:T| Q[z]}  List.  ((as ≡(T) bs)  (as ≡({z:T| Q[z]} bs))


Proof




Definitions occuring in Statement :  permr: as ≡(T) bs list: List prop: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] prop: uimplies: supposing a permr: as ≡(T) bs cand: c∧ B exists: x:A. B[x] sym_grp: Sym(n) perm: Perm(T) ge: i ≥  guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q false: False nat: less_than: a < b squash: T not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  permr_wf subtype_rel_list subtype_rel_self istype-universe list_wf int_seg_wf length_wf select_wf perm_f_wf non_neg_length int_seg_properties decidable__le le_wf less_than_wf length_wf_nat nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma intformeq_wf int_formula_prop_eq_lemma member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality applyEquality isectElimination setEquality hypothesis sqequalRule instantiate universeEquality independent_isectElimination lambdaEquality_alt setElimination rename setIsType because_Cache inhabitedIsType functionIsType productElimination independent_pairFormation dependent_pairFormation_alt natural_numberEquality equalityIsType1 equalityTransitivity equalitySymmetry dependent_set_memberEquality_alt productIsType unionElimination applyLambdaEquality imageElimination approximateComputation independent_functionElimination int_eqEquality isect_memberEquality_alt voidElimination hyp_replacement imageMemberEquality baseClosed

Latex:
\mforall{}T:Type.  \mforall{}Q:T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}as,bs:\{z:T|  Q[z]\}    List.    ((as  \mequiv{}(T)  bs)  {}\mRightarrow{}  (as  \mequiv{}(\{z:T|  Q[z]\}  )  bs))



Date html generated: 2019_10_16-PM-01_00_20
Last ObjectModification: 2018_10_08-PM-05_45_39

Theory : perms_2


Home Index