Nuprl Lemma : permr_suptyping
∀T:Type. ∀Q:T ⟶ ℙ. ∀as,bs:{z:T| Q[z]}  List.  ((as ≡(T) bs) 
⇒ (as ≡({z:T| Q[z]} ) bs))
Proof
Definitions occuring in Statement : 
permr: as ≡(T) bs
, 
list: T List
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
permr: as ≡(T) bs
, 
cand: A c∧ B
, 
exists: ∃x:A. B[x]
, 
sym_grp: Sym(n)
, 
perm: Perm(T)
, 
ge: i ≥ j 
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
false: False
, 
nat: ℕ
, 
less_than: a < b
, 
squash: ↓T
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
Lemmas referenced : 
permr_wf, 
subtype_rel_list, 
subtype_rel_self, 
istype-universe, 
list_wf, 
int_seg_wf, 
length_wf, 
select_wf, 
perm_f_wf, 
non_neg_length, 
int_seg_properties, 
decidable__le, 
le_wf, 
less_than_wf, 
length_wf_nat, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformnot_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
isectElimination, 
setEquality, 
hypothesis, 
sqequalRule, 
instantiate, 
universeEquality, 
independent_isectElimination, 
lambdaEquality_alt, 
setElimination, 
rename, 
setIsType, 
because_Cache, 
inhabitedIsType, 
functionIsType, 
productElimination, 
independent_pairFormation, 
dependent_pairFormation_alt, 
natural_numberEquality, 
equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality_alt, 
productIsType, 
unionElimination, 
applyLambdaEquality, 
imageElimination, 
approximateComputation, 
independent_functionElimination, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
hyp_replacement, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}T:Type.  \mforall{}Q:T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}as,bs:\{z:T|  Q[z]\}    List.    ((as  \mequiv{}(T)  bs)  {}\mRightarrow{}  (as  \mequiv{}(\{z:T|  Q[z]\}  )  bs))
Date html generated:
2019_10_16-PM-01_00_20
Last ObjectModification:
2018_10_08-PM-05_45_39
Theory : perms_2
Home
Index