Nuprl Lemma : fmonalg_wf

g:AbMon. ∀a:CRng.  (FMonAlg(g;a) ∈ 𝕌')


Proof




Definitions occuring in Statement :  fmonalg: FMonAlg(g;a) all: x:A. B[x] member: t ∈ T universe: Type crng: CRng abmonoid: AbMon
Definitions unfolded in proof :  fmonalg: FMonAlg(g;a) all: x:A. B[x] member: t ∈ T abmonoid: AbMon mon: Mon crng: CRng rng: Rng and: P ∧ Q uall: [x:A]. B[x] subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] algebra: algebra{i:l}(A) module: A-Module monoid_hom: MonHom(M1,M2) mul_mon_of_rng: r↓xmn grp_car: |g| pi1: fst(t) rng_of_alg: a↓rg rng_car: |r| so_apply: x[s]
Lemmas referenced :  fma_sig_wf monoid_hom_p_wf mul_mon_of_rng_wf rng_of_alg_wf rng_car_wf fma_alg_wf fma_inj_wf all_wf algebra_wf monoid_hom_wf uni_sat_wf alg_car_wf fma_umap_wf grp_car_wf alg_hom_p_wf equal_wf compose_wf crng_wf abmonoid_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut setEquality introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename because_Cache hypothesis productEquality cumulativity isectElimination hypothesisEquality applyEquality instantiate lambdaEquality functionEquality functionExtensionality

Latex:
\mforall{}g:AbMon.  \mforall{}a:CRng.    (FMonAlg(g;a)  \mmember{}  \mBbbU{}')



Date html generated: 2017_10_01-AM-10_01_22
Last ObjectModification: 2017_03_03-PM-01_03_52

Theory : polynom_1


Home Index