Nuprl Lemma : free_abmon_unique

S:DSet. ∀M,N:FAbMon(S).  ∃f:MonHom(M.mon,N.mon). ∃g:MonHom(N.mon,M.mon). InvFuns(|M.mon|;|N.mon|;f;g)


Proof




Definitions occuring in Statement :  free_abmon_mon: f.mon free_abmonoid: FAbMon(S) inv_funs: InvFuns(A;B;f;g) all: x:A. B[x] exists: x:A. B[x] monoid_hom: MonHom(M1,M2) grp_car: |g| dset: DSet
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T exists: x:A. B[x] subtype_rel: A ⊆B inv_funs: InvFuns(A;B;f;g) and: P ∧ Q prop: uall: [x:A]. B[x] unique_set: {!x:T P[x]} monoid_hom: MonHom(M1,M2) so_lambda: λ2x.t[x] so_apply: x[s] dset: DSet implies:  Q squash: T abmonoid: AbMon mon: Mon true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  free_abmonoid_wf dset_wf free_abmon_umap_wf free_abmon_mon_wf free_abmon_inj_wf inv_funs_wf grp_car_wf unique_set_wf equal_wf compose_wf exists_wf monoid_hom_wf free_abmon_endomorph_is_id compose_wf_for_mon_hom set_car_wf squash_wf true_wf abmonoid_wf comp_assoc iff_weakening_equal free_abmon_umap_properties_1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis dependent_pairFormation applyEquality because_Cache sqequalRule independent_pairFormation isectElimination lambdaEquality setElimination rename functionEquality independent_functionElimination imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination cumulativity

Latex:
\mforall{}S:DSet.  \mforall{}M,N:FAbMon(S).
    \mexists{}f:MonHom(M.mon,N.mon).  \mexists{}g:MonHom(N.mon,M.mon).  InvFuns(|M.mon|;|N.mon|;f;g)



Date html generated: 2017_10_01-AM-10_01_11
Last ObjectModification: 2017_03_03-PM-01_03_42

Theory : polynom_1


Home Index