Nuprl Lemma : free_abmon_unique
∀S:DSet. ∀M,N:FAbMon(S).  ∃f:MonHom(M.mon,N.mon). ∃g:MonHom(N.mon,M.mon). InvFuns(|M.mon|;|N.mon|;f;g)
Proof
Definitions occuring in Statement : 
free_abmon_mon: f.mon
, 
free_abmonoid: FAbMon(S)
, 
inv_funs: InvFuns(A;B;f;g)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
monoid_hom: MonHom(M1,M2)
, 
grp_car: |g|
, 
dset: DSet
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
inv_funs: InvFuns(A;B;f;g)
, 
and: P ∧ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
unique_set: {!x:T | P[x]}
, 
monoid_hom: MonHom(M1,M2)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
dset: DSet
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
abmonoid: AbMon
, 
mon: Mon
, 
true: True
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
free_abmonoid_wf, 
dset_wf, 
free_abmon_umap_wf, 
free_abmon_mon_wf, 
free_abmon_inj_wf, 
inv_funs_wf, 
grp_car_wf, 
unique_set_wf, 
equal_wf, 
compose_wf, 
exists_wf, 
monoid_hom_wf, 
free_abmon_endomorph_is_id, 
compose_wf_for_mon_hom, 
set_car_wf, 
squash_wf, 
true_wf, 
abmonoid_wf, 
comp_assoc, 
iff_weakening_equal, 
free_abmon_umap_properties_1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_pairFormation, 
applyEquality, 
because_Cache, 
sqequalRule, 
independent_pairFormation, 
isectElimination, 
lambdaEquality, 
setElimination, 
rename, 
functionEquality, 
independent_functionElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
cumulativity
Latex:
\mforall{}S:DSet.  \mforall{}M,N:FAbMon(S).
    \mexists{}f:MonHom(M.mon,N.mon).  \mexists{}g:MonHom(N.mon,M.mon).  InvFuns(|M.mon|;|N.mon|;f;g)
Date html generated:
2017_10_01-AM-10_01_11
Last ObjectModification:
2017_03_03-PM-01_03_42
Theory : polynom_1
Home
Index