Nuprl Lemma : oal_le_char

s:LOSet. ∀g:OGrp.  ((ps,qs:|oal(s;g)|. ps ≤{s,g} qs) <≡>{|oal(s;g)|} ((ps,qs:|oal(s;g)|. ps << qs)o))


Proof




Definitions occuring in Statement :  oal_lt: ps << qs oal_le: ps ≤{s,g} qs oalist: oal(a;b) binrel_eqv: E <≡>{T} E' all: x:A. B[x] ocgrp: OGrp loset: LOSet set_car: |p| refl_cl: Eo ab_binrel: x,y:T. E[x; y]
Definitions unfolded in proof :  binrel_eqv: E <≡>{T} E' all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a refl_cl: Eo ab_binrel: x,y:T. E[x; y] oal_le: ps ≤{s,g} qs oal_ble: ps ≤≤b qs iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: rev_implies:  Q ocgrp: OGrp uiff: uiff(P;Q) infix_ap: y
Lemmas referenced :  set_car_wf oalist_wf ocmon_subtype_abdmonoid ocgrp_subtype_ocmon subtype_rel_transitivity ocgrp_wf ocmon_wf abdmonoid_wf loset_wf ocgrp_abdgrp assert_wf bor_wf infix_ap_wf bool_wf set_eq_wf oal_blt_wf iff_transitivity or_wf equal_wf oal_lt_wf iff_weakening_uiff assert_of_bor assert_of_dset_eq assert_of_oal_blt
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination because_Cache independent_pairFormation lambdaEquality setElimination rename independent_functionElimination orFunctionality productElimination

Latex:
\mforall{}s:LOSet.  \mforall{}g:OGrp.
    ((ps,qs:|oal(s;g)|.  ps  \mleq{}\{s,g\}  qs)  <\mequiv{}>\{|oal(s;g)|\}  ((ps,qs:|oal(s;g)|.  ps  <<  qs)\msupzero{}))



Date html generated: 2017_10_01-AM-10_04_26
Last ObjectModification: 2017_03_03-PM-01_07_57

Theory : polynom_2


Home Index