Nuprl Lemma : assert_of_oal_blt

s:LOSet. ∀g:OGrp. ∀ps,qs:|oal(s;g)|.  (↑(ps <<b qs) ⇐⇒ ps << qs)


Proof




Definitions occuring in Statement :  oal_lt: ps << qs oal_blt: ps <<b qs oalist: oal(a;b) assert: b all: x:A. B[x] iff: ⇐⇒ Q ocgrp: OGrp loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] oal_lt: ps << qs member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a dset: DSet iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] rev_implies:  Q ocgrp: OGrp ocmon: OCMon abmonoid: AbMon mon: Mon loset: LOSet poset: POSet{i} qoset: QOSet oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set infix_ap: y prop: grp_car: |g| oal_blt: ps <<b qs oal_bpos: pos(ps) band: p ∧b q bool: 𝔹 unit: Unit it: btrue: tt not: ¬A false: False ifthenelse: if then else fi  bfalse: ff assert: b squash: T true: True uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) or: P ∨ Q oal_nil: 00 nil: [] top: Top
Lemmas referenced :  set_car_wf oalist_wf ocmon_subtype_abdmonoid ocgrp_subtype_ocmon subtype_rel_transitivity ocgrp_wf ocmon_wf abdmonoid_wf loset_wf iff_weakening_uiff equal_wf grp_car_wf lookup_wf grp_id_wf grp_op_wf grp_inv_wf grp_eq_shift_right grp_subtype_igrp abgrp_subtype_grp ocgrp_subtype_abgrp abgrp_wf grp_wf igrp_wf set_lt_wf grp_lt_wf grp_lt_shift_right dset_of_mon_wf0 subtype_rel_self istype-assert oal_blt_wf ocgrp_subtype_abdgrp oal_neg_wf2 oal_merge_wf2 bnot_wf oal_null_wf iff_transitivity equal-wf-T-base bool_wf assert_wf not_wf oal_nil_wf eqtt_to_assert assert_of_bnot assert_of_oal_null istype-void eqff_to_assert grp_blt_wf oal_lv_wf oal_lk_wf squash_wf true_wf istype-universe lookup_oal_neg lookup_merge iff_weakening_equal lookup_oal_eq_id oal_lk_bounds_dom set_lt_transitivity_2 set_lt_irreflexivity mset_mem_wf oal_dom_wf oal_merge_wf oal_neg_wf grp_sig_wf lookup_oal_lk assert_of_grp_blt loset_trichot oal_lv_nid list_wf poset_sig_wf grp_lt_irreflexivity dneg_elim decidable__dset_eq oal_equal_char nil_wf lookup_nil_lemma ocmon_subtype_omon omon_wf grp_lt_transitivity_2 grp_leq_weakening_eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt inhabitedIsType hypothesisEquality universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination applyEquality hypothesis instantiate independent_isectElimination sqequalRule lambdaEquality_alt setElimination rename equalityTransitivity equalitySymmetry productElimination independent_functionElimination dependent_pairFormation_alt because_Cache independent_pairFormation promote_hyp productIsType functionIsType equalityIstype unionElimination equalityElimination baseClosed voidElimination imageElimination universeEquality natural_numberEquality imageMemberEquality productEquality isect_memberEquality_alt

Latex:
\mforall{}s:LOSet.  \mforall{}g:OGrp.  \mforall{}ps,qs:|oal(s;g)|.    (\muparrow{}(ps  <<\msubb{}  qs)  \mLeftarrow{}{}\mRightarrow{}  ps  <<  qs)



Date html generated: 2019_10_16-PM-01_08_26
Last ObjectModification: 2018_11_27-AM-10_42_25

Theory : polynom_2


Home Index