Nuprl Lemma : assert_of_oal_blt
∀s:LOSet. ∀g:OGrp. ∀ps,qs:|oal(s;g)|.  (↑(ps <<b qs) ⇐⇒ ps << qs)
Proof
Definitions occuring in Statement : 
oal_lt: ps << qs, 
oal_blt: ps <<b qs, 
oalist: oal(a;b), 
assert: ↑b, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
ocgrp: OGrp, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
oal_lt: ps << qs, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
dset: DSet, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
rev_implies: P ⇐ Q, 
ocgrp: OGrp, 
ocmon: OCMon, 
abmonoid: AbMon, 
mon: Mon, 
loset: LOSet, 
poset: POSet{i}, 
qoset: QOSet, 
oalist: oal(a;b), 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq), 
set_car: |p|, 
pi1: fst(t), 
dset_list: s List, 
set_prod: s × t, 
dset_of_mon: g↓set, 
infix_ap: x f y, 
prop: ℙ, 
grp_car: |g|, 
oal_blt: ps <<b qs, 
oal_bpos: pos(ps), 
band: p ∧b q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
not: ¬A, 
false: False, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
assert: ↑b, 
squash: ↓T, 
true: True, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
or: P ∨ Q, 
oal_nil: 00, 
nil: [], 
top: Top
Lemmas referenced : 
set_car_wf, 
oalist_wf, 
ocmon_subtype_abdmonoid, 
ocgrp_subtype_ocmon, 
subtype_rel_transitivity, 
ocgrp_wf, 
ocmon_wf, 
abdmonoid_wf, 
loset_wf, 
iff_weakening_uiff, 
equal_wf, 
grp_car_wf, 
lookup_wf, 
grp_id_wf, 
grp_op_wf, 
grp_inv_wf, 
grp_eq_shift_right, 
grp_subtype_igrp, 
abgrp_subtype_grp, 
ocgrp_subtype_abgrp, 
abgrp_wf, 
grp_wf, 
igrp_wf, 
set_lt_wf, 
grp_lt_wf, 
grp_lt_shift_right, 
dset_of_mon_wf0, 
subtype_rel_self, 
istype-assert, 
oal_blt_wf, 
ocgrp_subtype_abdgrp, 
oal_neg_wf2, 
oal_merge_wf2, 
bnot_wf, 
oal_null_wf, 
iff_transitivity, 
equal-wf-T-base, 
bool_wf, 
assert_wf, 
not_wf, 
oal_nil_wf, 
eqtt_to_assert, 
assert_of_bnot, 
assert_of_oal_null, 
istype-void, 
eqff_to_assert, 
grp_blt_wf, 
oal_lv_wf, 
oal_lk_wf, 
squash_wf, 
true_wf, 
istype-universe, 
lookup_oal_neg, 
lookup_merge, 
iff_weakening_equal, 
lookup_oal_eq_id, 
oal_lk_bounds_dom, 
set_lt_transitivity_2, 
set_lt_irreflexivity, 
mset_mem_wf, 
oal_dom_wf, 
oal_merge_wf, 
oal_neg_wf, 
grp_sig_wf, 
lookup_oal_lk, 
assert_of_grp_blt, 
loset_trichot, 
oal_lv_nid, 
list_wf, 
poset_sig_wf, 
grp_lt_irreflexivity, 
dneg_elim, 
decidable__dset_eq, 
oal_equal_char, 
nil_wf, 
lookup_nil_lemma, 
ocmon_subtype_omon, 
omon_wf, 
grp_lt_transitivity_2, 
grp_leq_weakening_eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
inhabitedIsType, 
hypothesisEquality, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality_alt, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_functionElimination, 
dependent_pairFormation_alt, 
because_Cache, 
independent_pairFormation, 
promote_hyp, 
productIsType, 
functionIsType, 
equalityIstype, 
unionElimination, 
equalityElimination, 
baseClosed, 
voidElimination, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
productEquality, 
isect_memberEquality_alt
Latex:
\mforall{}s:LOSet.  \mforall{}g:OGrp.  \mforall{}ps,qs:|oal(s;g)|.    (\muparrow{}(ps  <<\msubb{}  qs)  \mLeftarrow{}{}\mRightarrow{}  ps  <<  qs)
Date html generated:
2019_10_16-PM-01_08_26
Last ObjectModification:
2018_11_27-AM-10_42_25
Theory : polynom_2
Home
Index