Nuprl Lemma : oal_lk_bounds_dom

s:LOSet. ∀g:AbDMon. ∀k:|s|. ∀ps:|oal(s;g)|.  ((¬(ps 00 ∈ |oal(s;g)|))  (↑(k ∈b dom(ps)))  (k ≤ lk(ps)))


Proof




Definitions occuring in Statement :  oal_lk: lk(ps) oal_dom: dom(ps) oal_nil: 00 oalist: oal(a;b) mset_mem: mset_mem assert: b all: x:A. B[x] not: ¬A implies:  Q equal: t ∈ T abdmonoid: AbDMon loset: LOSet set_leq: a ≤ b set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: implies:  Q uall: [x:A]. B[x] subtype_rel: A ⊆B dset: DSet loset: LOSet poset: POSet{i} qoset: QOSet oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set so_apply: x[s] guard: {T} not: ¬A false: False oal_nil: 00 nil: [] it: respects-equality: respects-equality(S;T) mon: Mon dmon: DMon abdmonoid: AbDMon mset_inj: mset_inj{s}(x) oal_dom: dom(ps) mset_sum: b mk_mset: mk_mset(as) append: as bs so_lambda: so_lambda3 top: Top so_apply: x[s1;s2;s3] oal_lk: lk(ps) mset_mem: mset_mem iff: ⇐⇒ Q and: P ∧ Q infix_ap: y or: P ∨ Q rev_implies:  Q uimplies: supposing a
Lemmas referenced :  oalist_cases_b not_wf equal_wf set_car_wf oalist_wf oal_nil_wf assert_wf mset_mem_wf oal_dom_wf abdmonoid_abmonoid set_leq_wf oal_lk_wf abdmonoid_wf loset_wf istype-void void-list-equality nil_wf set_blt_wf map_wf ball_wf grp_id_wf respects-equality-oalist1 dset_of_mon_wf set_prod_wf grp_car_wf cons_wf istype-assert list_ind_cons_lemma list_ind_nil_lemma map_cons_lemma mset_mem_inj_sum_lemma reduce_hd_cons_lemma ball_char iff_weakening_uiff set_lt_wf assert_of_set_lt mem_wf iff_transitivity bor_wf infix_ap_wf bool_wf set_eq_wf or_wf assert_of_bor assert_of_dset_eq set_leq_weakening_eq set_leq_weakening_lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality_alt functionEquality isectElimination hypothesis applyEquality setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry independent_functionElimination universeIsType because_Cache voidElimination functionIsType equalityIstype baseClosed sqequalBase voidEquality productElimination independent_pairEquality productEquality isect_memberEquality_alt independent_pairFormation unionElimination inlFormation_alt inrFormation_alt equalityIsType1 unionIsType independent_isectElimination

Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDMon.  \mforall{}k:|s|.  \mforall{}ps:|oal(s;g)|.    ((\mneg{}(ps  =  00))  {}\mRightarrow{}  (\muparrow{}(k  \mmember{}\msubb{}  dom(ps)))  {}\mRightarrow{}  (k  \mleq{}  lk(ps)))



Date html generated: 2020_05_20-AM-09_36_09
Last ObjectModification: 2020_01_08-PM-06_00_14

Theory : polynom_2


Home Index