Nuprl Lemma : oalist_cases_b

a:LOSet. ∀b:AbDMon. ∀Q:|oal(a;b)| ⟶ ℙ.
  (Q[[]]
   (∀ws:|oal(a;b)|. ∀k:|a|. ∀v:|b|.
        ((↑(∀bx(:|a|) ∈ map(λz.(fst(z));ws). (x <b k)))  (v e ∈ |b|))  Q[[<k, v> ws]]))
   {∀ws:|oal(a;b)|. Q[ws]})


Proof




Definitions occuring in Statement :  oalist: oal(a;b) ball: ball map: map(f;as) cons: [a b] nil: [] assert: b prop: guard: {T} so_apply: x[s] pi1: fst(t) all: x:A. B[x] not: ¬A implies:  Q lambda: λx.A[x] function: x:A ⟶ B[x] pair: <a, b> equal: t ∈ T abdmonoid: AbDMon grp_id: e grp_car: |g| loset: LOSet set_blt: a <b b set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q guard: {T} member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] uall: [x:A]. B[x] subtype_rel: A ⊆B dset: DSet prop: abdmonoid: AbDMon dmon: DMon mon: Mon loset: LOSet poset: POSet{i} qoset: QOSet set_prod: s × t mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) oalist: oal(a;b) dset_set: dset_set dset_list: List dset_of_mon: g↓set ball: ball and: P ∧ Q cand: c∧ B assert: b ifthenelse: if then else fi  sd_ordered: sd_ordered(as) ycomb: Y list_ind: list_ind map: map(f;as) nil: [] it: btrue: tt true: True not: ¬A false: False mem: a ∈b as mon_for: For{g} x ∈ as. f[x] for: For{T,op,id} x ∈ as. f[x] reduce: reduce(f;k;as) grp_id: e pi2: snd(t) bor_mon: <𝔹,∨b> bfalse: ff
Lemmas referenced :  oalist_cases_a set_car_wf oalist_wf dset_wf not_wf equal_wf grp_car_wf grp_id_wf assert_wf before_wf map_wf set_prod_wf dset_of_mon_wf all_wf ball_wf set_blt_wf mem_wf nil_wf dset_of_mon_wf0 sd_ordered_wf abdmonoid_wf loset_wf before_imp_before_all cons_in_oalist before_all_imp_before abdmonoid_abmonoid
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality isectElimination hypothesis setElimination rename independent_functionElimination because_Cache productElimination functionEquality universeEquality natural_numberEquality independent_pairFormation dependent_set_memberEquality productEquality cumulativity

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}Q:|oal(a;b)|  {}\mrightarrow{}  \mBbbP{}.
    (Q[[]]
    {}\mRightarrow{}  (\mforall{}ws:|oal(a;b)|.  \mforall{}k:|a|.  \mforall{}v:|b|.
                ((\muparrow{}(\mforall{}\msubb{}x(:|a|)  \mmember{}  map(\mlambda{}z.(fst(z));ws).  (x  <\msubb{}  k)))  {}\mRightarrow{}  (\mneg{}(v  =  e))  {}\mRightarrow{}  Q[[<k,  v>  /  ws]]))
    {}\mRightarrow{}  \{\mforall{}ws:|oal(a;b)|.  Q[ws]\})



Date html generated: 2016_05_16-AM-08_16_09
Last ObjectModification: 2015_12_28-PM-06_29_13

Theory : polynom_2


Home Index