Nuprl Lemma : lookup_oal_neg

a:DSet. ∀b:IGroup. ∀k:|a|. ∀ps:(|a| × |b|) List.  (((--ps)[k]) (~ (ps[k])) ∈ |b|)


Proof




Definitions occuring in Statement :  oal_neg: --ps lookup: as[k] list: List all: x:A. B[x] apply: a product: x:A × B[x] equal: t ∈ T igrp: IGroup grp_inv: ~ grp_id: e grp_car: |g| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T dset: DSet igrp: IGroup imon: IMonoid so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q oal_neg: --ps top: Top prop: squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q pi1: fst(t) pi2: snd(t) infix_ap: y bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff not: ¬A
Lemmas referenced :  list_induction set_car_wf grp_car_wf equal_wf lookup_wf grp_id_wf oal_neg_wf grp_inv_wf list_wf map_nil_lemma lookup_nil_lemma igrp_wf dset_wf squash_wf true_wf grp_inv_id iff_weakening_equal map_cons_lemma lookup_cons_pr_lemma set_eq_wf bool_wf uiff_transitivity equal-wf-T-base assert_wf eqtt_to_assert assert_of_dset_eq iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination productEquality setElimination rename because_Cache hypothesis sqequalRule lambdaEquality dependent_functionElimination hypothesisEquality applyEquality independent_functionElimination isect_memberEquality voidElimination voidEquality imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination unionElimination equalityElimination independent_pairFormation impliesFunctionality

Latex:
\mforall{}a:DSet.  \mforall{}b:IGroup.  \mforall{}k:|a|.  \mforall{}ps:(|a|  \mtimes{}  |b|)  List.    (((--ps)[k])  =  (\msim{}  (ps[k])))



Date html generated: 2017_10_01-AM-10_03_15
Last ObjectModification: 2017_03_03-PM-01_05_37

Theory : polynom_2


Home Index