Nuprl Lemma : lookup_oal_neg
∀a:DSet. ∀b:IGroup. ∀k:|a|. ∀ps:(|a| × |b|) List.  (((--ps)[k]) = (~ (ps[k])) ∈ |b|)
Proof
Definitions occuring in Statement : 
oal_neg: --ps, 
lookup: as[k], 
list: T List, 
all: ∀x:A. B[x], 
apply: f a, 
product: x:A × B[x], 
equal: s = t ∈ T, 
igrp: IGroup, 
grp_inv: ~, 
grp_id: e, 
grp_car: |g|, 
dset: DSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
dset: DSet, 
igrp: IGroup, 
imon: IMonoid, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
oal_neg: --ps, 
top: Top, 
prop: ℙ, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
pi1: fst(t), 
pi2: snd(t), 
infix_ap: x f y, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
not: ¬A
Lemmas referenced : 
list_induction, 
set_car_wf, 
grp_car_wf, 
equal_wf, 
lookup_wf, 
grp_id_wf, 
oal_neg_wf, 
grp_inv_wf, 
list_wf, 
map_nil_lemma, 
lookup_nil_lemma, 
igrp_wf, 
dset_wf, 
squash_wf, 
true_wf, 
grp_inv_id, 
iff_weakening_equal, 
map_cons_lemma, 
lookup_cons_pr_lemma, 
set_eq_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
eqtt_to_assert, 
assert_of_dset_eq, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
productEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
unionElimination, 
equalityElimination, 
independent_pairFormation, 
impliesFunctionality
Latex:
\mforall{}a:DSet.  \mforall{}b:IGroup.  \mforall{}k:|a|.  \mforall{}ps:(|a|  \mtimes{}  |b|)  List.    (((--ps)[k])  =  (\msim{}  (ps[k])))
Date html generated:
2017_10_01-AM-10_03_15
Last ObjectModification:
2017_03_03-PM-01_05_37
Theory : polynom_2
Home
Index