Nuprl Lemma : oal_lt_trans

s:LOSet. ∀g:OCMon.  Trans(|oal(s;g)|;ps,qs.ps << qs)


Proof




Definitions occuring in Statement :  oal_lt: ps << qs oalist: oal(a;b) trans: Trans(T;x,y.E[x; y]) all: x:A. B[x] ocmon: OCMon loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] trans: Trans(T;x,y.E[x; y]) implies:  Q oal_lt: ps << qs exists: x:A. B[x] and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B dset: DSet loset: LOSet poset: POSet{i} qoset: QOSet decidable: Dec(P) or: P ∨ Q dset_of_mon: g↓set set_prod: s × t dset_list: List pi1: fst(t) set_car: |p| mk_dset: mk_dset(T, eq) dset_set: dset_set oalist: oal(a;b) mon: Mon abmonoid: AbMon ocmon: OCMon uimplies: supposing a guard: {T} iff: ⇐⇒ Q true: True squash: T uiff: uiff(P;Q)
Lemmas referenced :  oal_lt_wf set_car_wf oalist_wf ocmon_subtype_abdmonoid ocmon_wf loset_wf decidable__set_leq grp_lt_wf grp_id_wf lookup_wf grp_car_wf set_lt_wf set_lt_transitivity_1 set_leq_iff_lt_or_eq ocmon_subtype_omon grp_leq_weakening_eq grp_lt_transitivity_2 grp_leq_weakening_lt grp_lt_transitivity_1 iff_weakening_equal subtype_rel_self poset_sig_wf istype-universe list_wf grp_sig_wf true_wf squash_wf set_leq_complement set_lt_transitivity_2 set_leq_weakening_lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin universeIsType cut introduction extract_by_obid dependent_functionElimination hypothesisEquality hypothesis inhabitedIsType isectElimination applyEquality sqequalRule lambdaEquality_alt setElimination rename equalityTransitivity equalitySymmetry unionElimination equalityIstype because_Cache functionIsType productIsType independent_pairFormation dependent_pairFormation_alt independent_isectElimination independent_functionElimination baseClosed imageMemberEquality natural_numberEquality universeEquality instantiate productEquality imageElimination

Latex:
\mforall{}s:LOSet.  \mforall{}g:OCMon.    Trans(|oal(s;g)|;ps,qs.ps  <<  qs)



Date html generated: 2020_05_20-AM-09_36_13
Last ObjectModification: 2020_01_16-PM-04_55_24

Theory : polynom_2


Home Index