Nuprl Lemma : oal_neg_eq_nil
∀a:LOSet. ∀b:AbDGrp. ∀ps:|oal(a;b)|.  ((--ps) = 00 ∈ |oal(a;b)| ⇐⇒ ps = 00 ∈ |oal(a;b)|)
Proof
Definitions occuring in Statement : 
oal_neg: --ps, 
oal_nil: 00, 
oalist: oal(a;b), 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
equal: s = t ∈ T, 
abdgrp: AbDGrp, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
abdgrp: AbDGrp, 
abgrp: AbGrp, 
grp: Group{i}, 
abdmonoid: AbDMon, 
dmon: DMon, 
uall: ∀[x:A]. B[x], 
mon: Mon, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
sq_stable: SqStable(P), 
squash: ↓T, 
rev_implies: P ⇐ Q, 
dset: DSet, 
true: True, 
guard: {T}
Lemmas referenced : 
oal_neg_wf2, 
oal_nil_wf, 
subtype_rel_sets, 
mon_wf, 
inverse_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
grp_inv_wf, 
comm_wf, 
eqfun_p_wf, 
grp_eq_wf, 
sq_stable__comm, 
set_car_wf, 
oalist_wf, 
abdgrp_wf, 
loset_wf, 
oal_merge_wf2, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
oal_neg_left_inv, 
oal_nil_ident_l, 
subtype_rel_self, 
iff_weakening_equal, 
oal_neg_right_inv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
equalityIstype, 
because_Cache, 
applyEquality, 
sqequalRule, 
instantiate, 
isectElimination, 
setEquality, 
cumulativity, 
setElimination, 
rename, 
lambdaEquality_alt, 
setIsType, 
universeIsType, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
applyLambdaEquality, 
universeEquality, 
natural_numberEquality, 
productElimination
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDGrp.  \mforall{}ps:|oal(a;b)|.    ((--ps)  =  00  \mLeftarrow{}{}\mRightarrow{}  ps  =  00)
Date html generated:
2019_10_16-PM-01_07_49
Last ObjectModification:
2018_11_27-AM-10_45_26
Theory : polynom_2
Home
Index