Nuprl Lemma : oal_neg_eq_nil

a:LOSet. ∀b:AbDGrp. ∀ps:|oal(a;b)|.  ((--ps) 00 ∈ |oal(a;b)| ⇐⇒ ps 00 ∈ |oal(a;b)|)


Proof




Definitions occuring in Statement :  oal_neg: --ps oal_nil: 00 oalist: oal(a;b) all: x:A. B[x] iff: ⇐⇒ Q equal: t ∈ T abdgrp: AbDGrp loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q subtype_rel: A ⊆B abdgrp: AbDGrp abgrp: AbGrp grp: Group{i} abdmonoid: AbDMon dmon: DMon uall: [x:A]. B[x] mon: Mon prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a sq_stable: SqStable(P) squash: T rev_implies:  Q dset: DSet true: True guard: {T}
Lemmas referenced :  oal_neg_wf2 oal_nil_wf subtype_rel_sets mon_wf inverse_wf grp_car_wf grp_op_wf grp_id_wf grp_inv_wf comm_wf eqfun_p_wf grp_eq_wf sq_stable__comm set_car_wf oalist_wf abdgrp_wf loset_wf oal_merge_wf2 equal_wf squash_wf true_wf istype-universe oal_neg_left_inv oal_nil_ident_l subtype_rel_self iff_weakening_equal oal_neg_right_inv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis independent_pairFormation equalityIstype because_Cache applyEquality sqequalRule instantiate isectElimination setEquality cumulativity setElimination rename lambdaEquality_alt setIsType universeIsType inhabitedIsType equalityTransitivity equalitySymmetry independent_isectElimination independent_functionElimination imageMemberEquality baseClosed imageElimination applyLambdaEquality universeEquality natural_numberEquality productElimination

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDGrp.  \mforall{}ps:|oal(a;b)|.    ((--ps)  =  00  \mLeftarrow{}{}\mRightarrow{}  ps  =  00)



Date html generated: 2019_10_16-PM-01_07_49
Last ObjectModification: 2018_11_27-AM-10_45_26

Theory : polynom_2


Home Index