Nuprl Lemma : omral_alg_umap_wf

g:OCMon. ∀a:CDRng. ∀n:algebra{i:l}(a). ∀f:|g| ⟶ n.car.  (alg_umap(n,f) ∈ |omral(g;a)| ⟶ n.car)


Proof




Definitions occuring in Statement :  omral_alg_umap: alg_umap(n,f) omralist: omral(g;r) algebra: algebra{i:l}(A) alg_car: a.car all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] cdrng: CDRng ocmon: OCMon grp_car: |g| set_car: |p|
Definitions unfolded in proof :  omral_alg_umap: alg_umap(n,f) all: x:A. B[x] member: t ∈ T tlambda: λx:T. b[x] uall: [x:A]. B[x] ocmon: OCMon omon: OMon and: P ∧ Q abmonoid: AbMon mon: Mon so_lambda: λ2y.t[x; y] infix_ap: y so_apply: x[s1;s2] prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a cdrng: CDRng so_lambda: λ2x.t[x] crng: CRng rng: Rng algebra: algebra{i:l}(A) module: A-Module omralist: omral(g;r) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t oset_of_ocmon: g↓oset dset_of_mon: g↓set add_grp_of_rng: r↓+gp grp_id: e pi2: snd(t) grp_car: |g| alg_car: a.car rng_car: |r| rng_of_alg: a↓rg so_apply: x[s] dset: DSet
Lemmas referenced :  rng_mssum_wf oset_of_ocmon_wf ulinorder_wf grp_car_wf assert_wf grp_le_wf equal_wf bool_wf grp_eq_wf band_wf qoset_subtype_dset poset_subtype_qoset loset_subtype_poset subtype_rel_transitivity loset_wf poset_wf qoset_wf dset_wf rng_of_alg_wf2 alg_act_wf rng_car_wf lookup_wf oset_of_ocmon_wf0 rng_zero_wf subtype_rel_self rng_of_alg_wf set_car_wf omral_dom_wf alg_car_wf omralist_wf algebra_wf cdrng_wf ocmon_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lambdaEquality introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination setElimination rename dependent_set_memberEquality productElimination hypothesisEquality hypothesis productEquality applyEquality because_Cache functionEquality instantiate independent_isectElimination

Latex:
\mforall{}g:OCMon.  \mforall{}a:CDRng.  \mforall{}n:algebra\{i:l\}(a).  \mforall{}f:|g|  {}\mrightarrow{}  n.car.    (alg\_umap(n,f)  \mmember{}  |omral(g;a)|  {}\mrightarrow{}  n.car)



Date html generated: 2018_05_22-AM-07_47_17
Last ObjectModification: 2018_05_19-AM-08_28_48

Theory : polynom_3


Home Index