Nuprl Lemma : eo-strict-forward-pred?

[Info:Type]. ∀[eo:EO+(Info)]. ∀[e:E].
  ∀e1:E. (es-pred?(eo>e;e1) if loc(e) loc(e1) ∧b (es-eq(eo) pred(e1) e) then inr ⋅  else es-pred?(eo;e1) fi  ∈ (E?))


Proof




Definitions occuring in Statement :  eo-strict-forward: eo>e event-ordering+: EO+(Info) es-pred?: es-pred?(es;e) es-pred: pred(e) es-eq: es-eq(es) es-loc: loc(e) es-E: E eq_id: b band: p ∧b q ifthenelse: if then else fi  it: uall: [x:A]. B[x] all: x:A. B[x] unit: Unit apply: a inr: inr  union: left right universe: Type equal: t ∈ T
Lemmas :  eo-strict-forward-E-subtype es-pred?_property es-E_wf eo-strict-forward_wf event-ordering+_subtype event-ordering+_wf es-pred?_wf es-locl_wf es-pred_wf es-locl-first assert_elim btrue_neq_bfalse assert_wf es-first_wf2 unit_wf2 Id_wf es-loc_wf es-causl_wf all_wf isect_wf or_wf equal_wf not_wf eo-strict-forward-loc eo-strict-forward-less eo-strict-forward-E-member decidable__equal_Id member-eo-strict-forward-E es-locl_transitivity2 es-le_weakening_eq es-causl_transitivity2 es-causl_weakening es-causle_weakening uiff_transitivity equal-wf-T-base eqtt_to_assert assert-eq-id bnot_wf eqff_to_assert assert_of_bnot iff_transitivity iff_weakening_uiff es-causle_weakening_eq and_wf es-causle_wf es-causl_irreflexivity eq_id_wf bool_wf es-eq_wf deq_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot assert-es-eq-E es-pred_property es-locl_irreflexivity es-pred-locl equal-unit it_wf
\mforall{}[Info:Type].  \mforall{}[eo:EO+(Info)].  \mforall{}[e:E].
    \mforall{}e1:E
        (es-pred?(eo>e;e1)
        =  if  loc(e)  =  loc(e1)  \mwedge{}\msubb{}  (es-eq(eo)  pred(e1)  e)  then  inr  \mcdot{}    else  es-pred?(eo;e1)  fi  )



Date html generated: 2015_07_17-PM-00_08_57
Last ObjectModification: 2015_01_28-AM-00_15_37

Home Index