Nuprl Lemma : fpf-union-compatible-property

[T,V:Type].
  ∀eq:EqDecider(T)
    ∀[X:T ─→ Type]
      ∀R:(V List) ─→ V ─→ 𝔹
        (∀A,B,C:t:T fp-> X[t] List.
           (fpf-union-compatible(T;V;t.X[t];eq;R;A;B)
            fpf-union-compatible(T;V;t.X[t];eq;R;C;A)
            fpf-union-compatible(T;V;t.X[t];eq;R;C;B)
            fpf-union-compatible(T;V;t.X[t];eq;R;C;fpf-union-join(eq;R;A;B)))) supposing 
           ((∀L1,L2:V List. ∀x:V.  (↑(R (L1 L2) x)) supposing ((↑(R L2 x)) and (↑(R L1 x)))) and 
           (∀L1,L2:V List. ∀x:V.  (L1 ⊆ L2  ↑(R L1 x) supposing ↑(R L2 x)))) 
      supposing ∀t:T. (X[t] ⊆V)


Proof




Definitions occuring in Statement :  fpf-union-join: fpf-union-join(eq;R;f;g) fpf-union-compatible: fpf-union-compatible(A;C;x.B[x];eq;R;f;g) fpf: a:A fp-> B[a] deq: EqDecider(T) l_contains: A ⊆ B append: as bs list: List assert: b bool: 𝔹 uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q apply: a function: x:A ─→ B[x] universe: Type
Lemmas :  assert_witness assert_wf l_contains_wf list_wf append_wf fpf-union-join-dom subtype-fpf2 top_wf subtype_top or_wf l_member_wf fpf-ap_wf fpf-union-join_wf subtype_rel_dep_function bool_wf subtype_rel_list subtype_rel_self not_wf fpf-dom_wf fpf-union-compatible_wf fpf_wf all_wf isect_wf subtype_rel_wf deq_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot fpf-union-join-ap member_append filter_wf5 set_wf member_filter subtype_rel_transitivity and_wf assert_elim decidable__assert l_all_iff
\mforall{}[T,V:Type].
    \mforall{}eq:EqDecider(T)
        \mforall{}[X:T  {}\mrightarrow{}  Type]
            \mforall{}R:(V  List)  {}\mrightarrow{}  V  {}\mrightarrow{}  \mBbbB{}
                (\mforall{}A,B,C:t:T  fp->  X[t]  List.
                      (fpf-union-compatible(T;V;t.X[t];eq;R;A;B)
                      {}\mRightarrow{}  fpf-union-compatible(T;V;t.X[t];eq;R;C;A)
                      {}\mRightarrow{}  fpf-union-compatible(T;V;t.X[t];eq;R;C;B)
                      {}\mRightarrow{}  fpf-union-compatible(T;V;t.X[t];eq;R;C;fpf-union-join(eq;R;A;B))))  supposing 
                      ((\mforall{}L1,L2:V  List.  \mforall{}x:V.    (\muparrow{}(R  (L1  @  L2)  x))  supposing  ((\muparrow{}(R  L2  x))  and  (\muparrow{}(R  L1  x))))  and 
                      (\mforall{}L1,L2:V  List.  \mforall{}x:V.    (L1  \msubseteq{}  L2  {}\mRightarrow{}  \muparrow{}(R  L1  x)  supposing  \muparrow{}(R  L2  x)))) 
            supposing  \mforall{}t:T.  (X[t]  \msubseteq{}r  V)



Date html generated: 2015_07_17-AM-11_07_40
Last ObjectModification: 2015_01_28-AM-08_00_22

Home Index